ATI RN
Fluid and Electrolytes ATI
1. A patient who is in renal failure partially loses the ability to regulate changes in pH because the kidneys:
- A. Regulate and reabsorb carbonic acid to change and maintain pH
- B. Buffer acids through electrolyte changes
- C. Regenerate and reabsorb bicarbonate to maintain a stable pH
- D. Combine carbonic acid and bicarbonate to maintain a stable pH
Correct answer: C
Rationale: The correct answer is C. In renal failure, the kidneys lose the ability to regulate pH by controlling bicarbonate levels in the extracellular fluid (ECF). The kidneys can regenerate and reabsorb bicarbonate ions to maintain a stable pH. Choices A, B, and D are incorrect because the kidneys do not primarily regulate or reabsorb carbonic acid, buffer acids through electrolyte changes, or combine carbonic acid and bicarbonate to maintain pH. The key function of the kidneys in maintaining pH balance lies in the control of bicarbonate levels.
2. You are the nurse caring for a 77-year-old male patient who has been involved in a motor vehicle accident. You and your colleague note that the patients labs indicate minimally elevated serum creatinine levels, which your colleague dismisses. What can this increase in creatinine indicate in older adults?
- A. Substantially reduced renal function
- B. Acute kidney injury
- C. Decreased cardiac output
- D. ) Alterations in ratio of body fluids to muscle mass
Correct answer: A
Rationale:
3. You are an emergency-room nurse caring for a trauma patient. Your patient has the following arterial blood gas results: pH 7.26, PaCO2 28, HCO3 11 mEq/L. How would you interpret these results?
- A. Respiratory acidosis with no compensation
- B. Metabolic alkalosis with a compensatory alkalosis
- C. Metabolic acidosis with no compensation
- D. Metabolic acidosis with a compensatory respiratory alkalosis
Correct answer: D
Rationale: A low pH indicates acidosis (normal pH is 7.35 to 7.45). The PaCO2 is also low, which causes alkalosis. The bicarbonate is low, which causes acidosis. The pH bicarbonate more closely corresponds with a decrease in pH, making the metabolic component the primary problem. Therefore, the correct interpretation of the arterial blood gas results is metabolic acidosis with a compensatory respiratory alkalosis. Choices A, B, and C are incorrect because they do not accurately reflect the primary acid-base disturbance and the compensatory response seen in the given results.
4. A nurse is caring for a client who has just experienced a 90-second tonic-clonic seizure. The clients arterial blood gas values are pH 6.88, PaO2 50 mm Hg, PaCO2 60 mm Hg, and HCO3 22 mEq/L. Which action should the nurse take first?
- A. . Apply oxygen by mask or nasal cannula
- B. Apply a paper bag over the clients nose and mouth.
- C. Administer 50 mL of sodium bicarbonate intravenously.
- D. Administer 50 mL of 20% glucose and 20 units of regular insulin.
Correct answer: A
Rationale:
5. How would a decrease in blood protein concentration impact the fluid volumes?
- A. increase interstitial fluid volume.
- B. decrease blood plasma volume.
- C. decrease interstitial fluid volume.
- D. increase interstitial fluid volume and decrease blood plasma volume.
Correct answer: D
Rationale: A decrease in blood protein concentration would lead to a reduction in osmotic pressure, which is responsible for drawing fluid back into the capillaries. This decrease in osmotic pressure would result in an increase in interstitial fluid volume as fluid moves out of the capillaries, and a decrease in blood plasma volume as less fluid is drawn back into the circulation. Therefore, the correct answer is to increase interstitial fluid volume and decrease blood plasma volume. Choices A, B, and C are incorrect because they do not reflect the impact of decreased blood protein concentration on fluid volumes.
Similar Questions
Access More Features
ATI RN Basic
$69.99/ 30 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access
ATI RN Premium
$149.99/ 90 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access