ATI RN
Fluid and Electrolytes ATI
1. A female patient is discharged from the hospital after having an episode of heart failure. She's prescribed daily oral doses of digoxin (Lanoxin) and furosemide (Lasix). Two days later, she tells her community health nurse that she feels weak and her heart 'flutters' frequently. What action should the nurse take?
- A. Tell the patient to rest more frequently.
- B. Advise the patient to discontinue digoxin and contact the physician.
- C. Contact the physician, report the symptoms, and request a blood sample to determine the patient's potassium level.
- D. Instruct the patient to avoid caffeine-containing foods.
Correct answer: C
Rationale: The correct action for the nurse to take is to contact the physician, report the patient's symptoms, and request a blood sample to determine the patient's potassium level. Furosemide, a potassium-wasting diuretic, can lead to hypokalemia, causing weakness and palpitations. Therefore, checking the potassium level is crucial in this situation. Simply telling the patient to rest more frequently won't address the underlying issue of potassium depletion. While digoxin can cause adverse effects, in this case, the symptoms are more likely related to furosemide-induced potassium loss. Instructing the patient to avoid caffeine-containing foods may be beneficial in general, but it wouldn't directly address the potassium depletion that needs urgent attention.
2. Extracellular fluid includes:
- A. plasma and intracellular fluid.
- B. interstitial and intracellular fluids.
- C. plasma and interstitial fluid.
- D. plasma, interstitial fluid, and intracellular fluid.
Correct answer: C
Rationale: The correct answer is C: 'plasma and interstitial fluid.' Extracellular fluid consists of all body fluids outside the cells, primarily including plasma (the liquid component of blood) and interstitial fluid (the fluid between cells). Choices A, B, and D are incorrect because intracellular fluid is located within the cells, not in the extracellular fluid compartment.
3. You are an emergency-room nurse caring for a trauma patient. Your patient has the following arterial blood gas results: pH 7.26, PaCO2 28, HCO3 11 mEq/L. How would you interpret these results?
- A. Respiratory acidosis with no compensation
- B. Metabolic alkalosis with a compensatory alkalosis
- C. Metabolic acidosis with no compensation
- D. Metabolic acidosis with a compensatory respiratory alkalosis
Correct answer: D
Rationale: A low pH indicates acidosis (normal pH is 7.35 to 7.45). The PaCO2 is also low, which causes alkalosis. The bicarbonate is low, which causes acidosis. The pH bicarbonate more closely corresponds with a decrease in pH, making the metabolic component the primary problem. Therefore, the correct interpretation of the arterial blood gas results is metabolic acidosis with a compensatory respiratory alkalosis. Choices A, B, and C are incorrect because they do not accurately reflect the primary acid-base disturbance and the compensatory response seen in the given results.
4. You are caring for a patient with a secondary diagnosis of hypermagnesemia. What assessment finding would be most consistent with this diagnosis?
- A. Hypertension
- B. Kussmaul respirations
- C. Increased DTRs
- D. Shallow respirations
Correct answer: D
Rationale:
5. Your patient has the following arterial blood gas results: pH 7.26, PaCO2 28, HCO3 11 mEq/L. How would the nurse interpret the results?
- A. Respiratory acidosis with no compensation
- B. Metabolic alkalosis with a compensatory alkalosis
- C. Metabolic acidosis with no compensation
- D. Metabolic acidosis with a compensatory respiratory alkalosis
Correct answer: D
Rationale: The given arterial blood gas results show a low pH, indicating acidosis, with normal pH range being 7.35 to 7.45. The low PaCO2 suggests alkalosis, while the low bicarb level indicates acidosis. In this scenario, the primary issue is the metabolic acidosis, as the pH bicarb relationship supports this. The compensatory response to metabolic acidosis is a decrease in PaCO2, leading to a respiratory alkalosis. Therefore, the correct interpretation is 'Metabolic acidosis with a compensatory respiratory alkalosis.' Choices A, B, and C are incorrect as they do not accurately reflect the relationship between the pH, PaCO2, and HCO3 levels in the arterial blood gas results provided.
Similar Questions
Access More Features
ATI RN Basic
$69.99/ 30 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access
ATI RN Premium
$149.99/ 90 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access