ATI RN
Fluid and Electrolytes ATI
1. A 65-year-old male patient was admitted to a medical-surgical unit 72 hours ago with pyloric stenosis; a nasogastric tube was inserted upon admission and has been on low intermittent suction since then. The nurse taking care of the patient notices that his potassium is very low and becomes concerned that the patient may be at risk for:
- A. Hypercalcemia
- B. Metabolic acidosis
- C. Metabolic alkalosis
- D. Respiratory acidosis
Correct answer: C
Rationale: The correct answer is C, metabolic alkalosis. The patient with pyloric stenosis has been on low intermittent suction, leading to the loss of hydrogen and chloride ions. This condition causes metabolic alkalosis due to the removal of these ions. Options A (Hypercalcemia) and D (Respiratory acidosis) are incorrect as they are not directly related to the scenario described. Option B (Metabolic acidosis) is also incorrect; in this case, the patient is at risk of metabolic alkalosis due to the loss of hydrogen and chloride ions through gastric suction.
2. When planning the care of a patient with a fluid imbalance, the nurse understands that in the human body, water and electrolytes move from the arterial capillary bed to the interstitial fluid. What causes this to occur?
- A. Active transport of hydrogen ions across the capillary walls
- B. Pressure of the blood in the renal capillaries
- C. Action of the dissolved particles contained in a unit of blood
- D. Hydrostatic pressure resulting from the pumping action of the heart
Correct answer: D
Rationale:
3. You are working on a burns unit, and one of your acutely ill patients is exhibiting signs and symptoms of third spacing. Based on this change in status, you should expect the patient to exhibit signs and symptoms of what imbalance?
- A. Metabolic alkalosis
- B. Hypermagnesemia
- C. Hypercalcemia
- D. Hypovolemia
Correct answer: D
Rationale: When a patient exhibits signs and symptoms of third-spacing, where fluid moves out of the intravascular space but not into the intracellular space, hypovolemia is expected. This leads to a decreased circulating blood volume. Increased calcium and magnesium levels are not typically associated with third-spacing fluid shift. Burns usually result in acidosis rather than alkalosis, making metabolic alkalosis an incorrect choice. Therefore, hypovolemia is the correct answer in this scenario.
4. What electrolyte value should be monitored when a patient is receiving a loop diuretic?
- A. Calcium levels
- B. Phosphorus levels
- C. Potassium levels
- D. Magnesium levels
Correct answer: C
Rationale: When a patient is receiving a loop diuretic like furosemide (Lasix), potassium levels should be monitored closely. Loop diuretics act on the ascending loop of Henle to inhibit the reabsorption of sodium and water, leading to potassium loss. Monitoring potassium levels is crucial to prevent hypokalemia, which can result in serious complications such as cardiac arrhythmias. Calcium levels (Choice A), phosphorus levels (Choice B), and magnesium levels (Choice D) are not typically affected directly by loop diuretics and do not require routine monitoring in this context.
5. A nurse in the neurologic ICU has orders to infuse a hypertonic solution into a patient with increased intracranial pressure. This solution will increase the number of dissolved particles in the patient's blood, creating pressure for fluids in the tissues to shift into the capillaries and increase the blood volume. This process is best described as which of the following?
- A. Hydrostatic pressure
- B. Osmosis and osmolality
- C. Diffusion
- D. Active transport
Correct answer: B
Rationale: The correct answer is B: Osmosis and osmolality. Osmosis is the movement of fluid from a region of low solute concentration to a region of high solute concentration across a semipermeable membrane. In this case, the hypertonic solution increases the number of dissolved particles in the blood, causing fluids to shift into the capillaries due to the osmotic pressure gradient. Osmolality refers to the concentration of solutes in a solution. Hydrostatic pressure refers to changes in water or volume related to water pressure, not the movement of fluids due to solute concentration differences. Diffusion is the movement of solutes from an area of greater concentration to lesser concentration; in an intact vascular system, solutes are unable to move freely, so diffusion does not play a significant role in this scenario. Active transport involves the movement of molecules against the concentration gradient with the use of energy, typically at the cellular level, and is not related to the vascular volume changes described in the question.
Similar Questions
Access More Features
ATI RN Basic
$69.99/ 30 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access
ATI RN Premium
$149.99/ 90 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access