ATI RN
Fluid and Electrolytes ATI
1. The renin and angiotensin systems help to maintain the balance of sodium and water in the body. What other functions do these systems serve?
- A. Regulating hemoglobin levels
- B. Maintaining a healthy blood volume
- C. Releasing platelets when tissues are injured
- D. Lowering blood volumes
Correct answer: B
Rationale: The correct answer is B: Maintaining a healthy blood volume. The renin and angiotensin systems not only help to regulate sodium and water balance in the body but also play a crucial role in maintaining an adequate blood volume. This is essential for normal blood pressure regulation and overall cardiovascular health. Choices A, C, and D are incorrect because hemoglobin levels are primarily regulated by the bone marrow and erythropoietin, platelets are released in response to blood vessel injury by a different mechanism, and the systems do not focus on lowering blood volumes but rather on maintaining them.
2. Your patient has the following arterial blood gas results: pH 7.26, PaCO2 28, HCO3 11 mEq/L. How would the nurse interpret the results?
- A. Respiratory acidosis with no compensation
- B. Metabolic alkalosis with a compensatory alkalosis
- C. Metabolic acidosis with no compensation
- D. Metabolic acidosis with a compensatory respiratory alkalosis
Correct answer: D
Rationale: The given arterial blood gas results show a low pH, indicating acidosis, with normal pH range being 7.35 to 7.45. The low PaCO2 suggests alkalosis, while the low bicarb level indicates acidosis. In this scenario, the primary issue is the metabolic acidosis, as the pH bicarb relationship supports this. The compensatory response to metabolic acidosis is a decrease in PaCO2, leading to a respiratory alkalosis. Therefore, the correct interpretation is 'Metabolic acidosis with a compensatory respiratory alkalosis.' Choices A, B, and C are incorrect as they do not accurately reflect the relationship between the pH, PaCO2, and HCO3 levels in the arterial blood gas results provided.
3. A nurse is caring for a patient who requires measurement of specific gravity every 4 hours. What does this test detect?
- A. Nutritional deficit
- B. Hyperkalemia
- C. Hypercalcemia
- D. Fluid volume status
Correct answer: D
Rationale: Specific gravity is a test used to determine the concentration of solutes in the urine, reflecting the kidney's ability to concentrate urine. Changes in specific gravity can indicate fluid volume status, such as dehydration (fluid volume deficit) or overhydration (fluid volume excess). Options A, B, and C are incorrect as specific gravity does not directly detect nutritional deficits, hyperkalemia, or hypercalcemia.
4. You are the nurse caring for a patient who is to receive IV daunorubicin, a chemotherapeutic agent. You start the infusion and check the insertion site as per protocol. During your most recent check, you note that the IV has infiltrated so you stop the infusion. What is your main concern with this infiltration?
- A. Extravasation of the medication
- B. Discomfort to the patient
- C. Blanching at the site
- D. Hypersensitivity reaction to the medication
Correct answer: A
Rationale:
5. What is the most important regulator of the amount of sodium in the body?
- A. Kidneys
- B. Small intestine
- C. Large intestine
- D. Skin
Correct answer: A
Rationale: The correct answer is A: Kidneys. The kidneys play a crucial role in regulating the amount of sodium in the body. They achieve this by filtering blood and controlling the excretion or reabsorption of sodium. The small intestine is primarily responsible for nutrient absorption, not sodium regulation. The large intestine is mainly involved in water absorption and waste elimination, not sodium balance. The skin helps regulate body temperature through sweating and does not directly regulate sodium levels.
Similar Questions
Access More Features
ATI RN Basic
$69.99/ 30 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access
ATI RN Premium
$149.99/ 90 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access