ATI RN
ATI Fluid and Electrolytes
1. What is the most abundant positive ion in blood plasma?
- A. Potassium.
- B. Calcium.
- C. Sodium.
- D. Both potassium and sodium are in equal concentrations.
Correct answer: C
Rationale: The correct answer is C: Sodium. Sodium (Na+) is the most abundant cation in the extracellular fluid, including blood plasma. It plays a crucial role in maintaining fluid balance, nerve function, and is essential for various physiological processes. Choice A, Potassium, is also an important ion in the body but is predominantly found intracellularly. Choice B, Calcium, is an essential mineral in the body but is not the most abundant positive ion in blood plasma. Choice D is incorrect as sodium is the primary positive ion in blood plasma, with a much higher concentration compared to potassium.
2. Where is the largest volume of water in the body located?
- A. Plasma
- B. The fluid inside the cells
- C. Interstitial fluid
- D. Lymph
Correct answer: B
Rationale: The correct answer is B. The largest volume of water in the body is found inside the cells, known as intracellular fluid. This fluid makes up the majority of the body's total water content. Choices A, C, and D are incorrect because while plasma, interstitial fluid, and lymph are important components of the body's fluid compartments, they do not contain the largest volume of water in the body.
3. You are an emergency-room nurse caring for a trauma patient. Your patient has the following arterial blood gas results: pH 7.26, PaCO2 28, HCO3 11 mEq/L. How would you interpret these results?
- A. Respiratory acidosis with no compensation
- B. Metabolic alkalosis with a compensatory alkalosis
- C. Metabolic acidosis with no compensation
- D. Metabolic acidosis with a compensatory respiratory alkalosis
Correct answer: D
Rationale: A low pH indicates acidosis (normal pH is 7.35 to 7.45). The PaCO2 is also low, which causes alkalosis. The bicarbonate is low, which causes acidosis. The pH bicarbonate more closely corresponds with a decrease in pH, making the metabolic component the primary problem. Therefore, the correct interpretation of the arterial blood gas results is metabolic acidosis with a compensatory respiratory alkalosis. Choices A, B, and C are incorrect because they do not accurately reflect the primary acid-base disturbance and the compensatory response seen in the given results.
4. When does dehydration begin to occur?
- A. the body reduces fluid output to zero.
- B. the body increases the release of ANH.
- C. the salivary secretions decrease.
- D. the salivary secretions increase.
Correct answer: C
Rationale: Dehydration leads to a decrease in the body's fluid levels, causing the salivary glands to produce less saliva, resulting in a dry mouth. Therefore, when dehydration begins to occur, salivary secretions decrease. Choice A is incorrect because the body does not reduce fluid output to zero during dehydration; it tries to conserve fluids. Choice B is incorrect as dehydration does not directly increase the release of ANH (Atrial Natriuretic Hormone). Choice D is incorrect because salivary secretions do not increase but decrease during dehydration.
5. What is the main water-holding force in the blood capillaries?
- A. Capillary blood pressure
- B. Sodium in the blood plasma
- C. Protein in the blood plasma
- D. Chloride in the blood plasma
Correct answer: C
Rationale: The correct answer is C: Protein in the blood plasma. Plasma proteins, especially albumin, create oncotic pressure, which is the main force responsible for holding water within the blood capillaries. Capillary blood pressure (Choice A) is involved in pushing blood through the capillaries, while sodium and chloride in the blood plasma (Choices B and D) are electrolytes and do not play a significant role in the water-holding force within capillaries.
Similar Questions
Access More Features
ATI RN Basic
$69.99/ 30 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access
ATI RN Premium
$149.99/ 90 days
- 5,000 Questions with answers
- All ATI courses Coverage
- 30 days access