HESI A2
HESI A2 Chemistry Practice Questions
1. What is the charge of a beta particle?
- A. -1
- B. +1
- C. +2
- D. No charge
Correct answer: A
Rationale: A beta particle has a charge of -1. Beta particles are high-energy, high-speed electrons emitted during radioactive decay processes. Since electrons carry a charge of -1, beta particles also carry a charge of -1. This negative charge indicates that beta particles are negatively charged. Option B is incorrect as it suggests a positive charge, which is not the case for beta particles. Option C is incorrect as it indicates a higher positive charge, which is not true for beta particles. Option D is incorrect as beta particles do have a charge, which is negative.
2. What can stop the penetration of gamma radiation?
- A. Aluminum foil
- B. Glass
- C. Several feet of concrete
- D. Piece of paper
Correct answer: C
Rationale: Gamma radiation is highly penetrative and requires dense materials to block it effectively. While aluminum foil and glass are not sufficient to stop gamma radiation, several feet of concrete is needed due to its high density and ability to absorb gamma radiation effectively. A piece of paper is too thin and lacks the density required to block gamma radiation, making it an ineffective shield.
3. Which of the following pH values is most likely for lemon juice?
- A. 3
- B. 5
- C. 7
- D. 9
Correct answer: A
Rationale: Lemon juice is highly acidic with a pH around 2-3, making it more acidic than neutral substances. A pH of 5 is too high for lemon juice, indicating less acidity. Similarly, pH 7 is neutral, and pH 9 would be alkaline, which is not characteristic of lemon juice. Therefore, the correct answer is option A (pH 3).
4. How much concentrated HCl should be used to prepare 500 mL of a 0.100 M HCl solution?
- A. 75 mL
- B. 100 mL
- C. 125 mL
- D. 150 mL
Correct answer: B
Rationale: To prepare a 0.100 M HCl solution with a volume of 500 mL, you can use the formula C1V1 = C2V2, where C1 is the concentration of the concentrated HCl solution, V1 is the volume of concentrated HCl solution used, C2 is the desired concentration (0.100 M), and V2 is the final volume (500 mL). Rearranging the formula to solve for V1, you get V1 = (C2V2) / C1. Plugging in the values (0.100 M)(500 mL) / C1 = 100 mL, which means 100 mL of concentrated HCl should be used to prepare 500 mL of a 0.100 M HCl solution. Therefore, the correct answer is 100 mL. Choice A (75 mL), Choice C (125 mL), and Choice D (150 mL) are incorrect as they do not match the calculated volume needed to prepare the desired concentration of HCl solution.
5. Which elements are typically involved in hydrogen bonding?
- A. Carbon, hydrogen, oxygen
- B. Fluorine, chlorine, oxygen
- C. Fluorine, chlorine, nitrogen
- D. Fluorine, oxygen, nitrogen
Correct answer: D
Rationale: Hydrogen bonding occurs between hydrogen and highly electronegative atoms such as fluorine, oxygen, and nitrogen. These atoms have a strong pull on the shared electrons, leading to a partial negative charge on them, which allows them to form hydrogen bonds with hydrogen or other electronegative atoms. Choice A is incorrect because carbon is not typically involved in hydrogen bonding. Choice B is incorrect because chlorine is not as electronegative as nitrogen, and choice C is incorrect because nitrogen is more electronegative than chlorine.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access