HESI A2
HESI A2 Biology 2024
1. Which is a byproduct of fermentation in muscle cells?
- A. Ethanol
- B. Pyruvic acid
- C. Lactic acid
- D. Oxygen
Correct answer: C
Rationale: Lactic acid is a byproduct of fermentation in muscle cells. During intense exercise or when oxygen is limited, muscle cells use anaerobic respiration to generate energy. This process breaks down glucose into lactic acid, which can cause muscle fatigue and soreness. Choice A, Ethanol, is not produced in muscle cells during fermentation. Choice B, Pyruvic acid, is an intermediate product in glucose metabolism but is not a byproduct of fermentation in muscle cells. Choice D, Oxygen, is not a byproduct of fermentation but a reactant in aerobic respiration.
2. How do green plants use nitrates in the nitrogen cycle?
- A. To synthesize proteins
- B. To store food
- C. To decompose ammonia
- D. To break down nitrites
Correct answer: A
Rationale: Green plants use nitrates in the nitrogen cycle to synthesize proteins. Nitrogen is an essential component of amino acids, which are the building blocks of proteins. Plants take up nitrates from the soil through their roots and incorporate nitrogen into their proteins through the process of protein biosynthesis. This helps in their growth, development, and overall health. Choice B, 'To store food,' is incorrect because nitrates are primarily used for protein synthesis, not food storage. Choice C, 'To decompose ammonia,' is incorrect as plants do not decompose ammonia but rather utilize it through nitrification. Choice D, 'To break down nitrites,' is incorrect as plants typically convert nitrites into nitrates through a process called nitrate assimilation for protein synthesis.
3. Which animal has an open transport system?
- A. Grasshopper
- B. Earthworm
- C. Dolphin
- D. Chicken
Correct answer: B
Rationale: The correct answer is B: Earthworm. Earthworms have an open circulatory system, meaning their blood and interstitial fluid are not enclosed in blood vessels. Instead, the blood flows freely within the body cavity, allowing for direct exchange of nutrients and waste products with surrounding tissues. This lack of a closed transport system is a characteristic feature of earthworms. Choices A, C, and D are incorrect because grasshoppers, dolphins, and chickens have closed circulatory systems where the blood is enclosed within blood vessels, unlike earthworms.
4. In an example of a male with hemophilia and a female carrier, what ratio of the offspring are predicted neither to carry nor to manifest the disease?
- A. 0 females : 1 male
- B. 1 female : 1 male
- C. 1 female : 0 males
- D. 2 females : 1 male
Correct answer: D
Rationale: In this scenario, the male offspring will inherit the Y chromosome from the father and the X chromosome from the carrier mother. As a result, they will not have the hemophilia gene. The female offspring will inherit one X chromosome from the mother, which does not carry the hemophilia gene, and one X chromosome from the father, which does not exist due to the Y chromosome. Therefore, all female offspring will not carry or manifest hemophilia, resulting in a ratio of 2 females to 1 male. Choice A is incorrect because it does not account for the female offspring. Choices B and C are incorrect as they do not reflect the correct ratio based on the inheritance pattern of hemophilia.
5. If bacteria are placed in a strong solution of salt water, they will shrink as water moves out of the bacteria. What is this process called?
- A. Dehydration synthesis
- B. Hydrolysis
- C. Osmosis
- D. Isotonic transport
Correct answer: C
Rationale: Osmosis is the process by which water molecules move across a semipermeable membrane from an area of lower solute concentration to an area of higher solute concentration. In this case, when bacteria are placed in a strong solution of salt water, the high concentration of solutes outside the bacteria causes water to move out of the bacteria, leading to shrinkage. This process is known as osmosis. Dehydration synthesis (Choice A) is a process where molecules combine by removing water. Hydrolysis (Choice B) is the breakdown of molecules by the addition of water. Isotonic transport (Choice D) does not accurately describe the specific movement of water in or out of bacterial cells in a hypertonic solution.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access @ $99
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $149.99