HESI A2
Chemistry Hesi A2
1. To the nearest whole number, what is the mass of one mole of hydrogen chloride?
- A. 36 g/mol
- B. 38 g/mol
- C. 71 g/mol
- D. 74 g/mol
Correct answer: C
Rationale: The molar mass of hydrogen chloride (HCl) is calculated by adding the atomic masses of hydrogen (H) and chlorine (Cl) together. The atomic mass of hydrogen is approximately 1 g/mol, and the atomic mass of chlorine is approximately 35.5 g/mol. Therefore, the molar mass of hydrogen chloride (HCl) is approximately 1 + 35.5 = 36.5 g/mol. When rounded to the nearest whole number, it is 36 g/mol. Therefore, the correct answer is 36 g/mol. Choices A, B, and D are incorrect as they do not reflect the accurate molar mass of hydrogen chloride.
2. Balance this equation: Zn + HCl → ZnCl + H2.
- A. Zn + 2HCl → ZnCl + H2
- B. Zn + HCl → 2ZnCl + H2
- C. 2Zn + 2HCl → 2ZnCl + H2
- D. Zn + 4HCl → ZnCl + H2
Correct answer: C
Rationale: The given unbalanced equation is Zn + HCl → ZnCl + H2. To balance it, we need to have equal atoms on both sides of the equation. The balanced equation is 2Zn + 2HCl → 2ZnCl + H2. This balanced equation shows that two atoms of Zn combine with two molecules of HCl to form two molecules of ZnCl and one molecule of H2. Choice A is incorrect because it does not balance the equation. Choice B is incorrect as it does not have the same number of atoms on both sides. Choice D is incorrect because it does not balance the equation properly, resulting in an unequal number of atoms on both sides.
3. A chemist takes 100 mL of a 40 g NaCl solution and dilutes it to 1L. What is the concentration (molarity) of the new solution?
- A. 0.04 M NaCl
- B. 0.25 M NaCl
- C. 0.40 M NaCl
- D. 2.5 M NaCl
Correct answer: C
Rationale: Initially, the chemist has 40 g of NaCl in 100 mL of solution. To find the initial molarity, we need to calculate the number of moles of NaCl using the molar mass of NaCl (58.44 g/mol). After dilution to 1 L, the molarity of the new solution can be calculated by dividing the moles of NaCl by the total volume in liters. Therefore, the concentration (molarity) of the new solution is 0.40 M NaCl. Choice A (0.04 M NaCl) is incorrect because it doesn't consider the correct molar concentration after dilution. Choice B (0.25 M NaCl) is incorrect as it also doesn't account for the correct molar concentration post-dilution. Choice D (2.5 M NaCl) is incorrect as it is too concentrated given the initial amount of NaCl and the dilution factor.
4. Which is a triatomic allotrope of oxygen?
- A. Ozone
- B. Water
- C. Acidic oxide
- D. Carbon dioxide
Correct answer: A
Rationale: Ozone (O3) is a triatomic allotrope of oxygen. It differs from the common diatomic oxygen molecule (O2) by having three oxygen atoms bonded together. Ozone is known for its protective role in the Earth's atmosphere, absorbing most of the Sun's harmful ultraviolet radiation. Water (H2O) is a compound composed of two hydrogen atoms and one oxygen atom. Acidic oxide and carbon dioxide are not triatomic allotropes of oxygen. Carbon dioxide consists of one carbon atom and two oxygen atoms, while acidic oxides refer to compounds where oxygen is bonded with other elements to form oxides, and they are not allotropes of oxygen.
5. In the solid state, you would expect a nonmetal to be _________.
- A. brittle
- B. lustrous
- C. malleable
- D. conductive
Correct answer: A
Rationale: In the solid state, you would expect a nonmetal to be brittle. Nonmetals generally lack the malleability and ductility of metals, which makes them prone to being brittle and easily fractured under stress. This property is due to the lack of metallic bonding in nonmetals, which results in a more rigid and less flexible structure. Choice B, 'lustrous,' is incorrect because nonmetals typically do not exhibit a shiny or reflective surface like metals do. Choice C, 'malleable,' is also incorrect as nonmetals lack the ability to be hammered or rolled into thin sheets like metals. Choice D, 'conductive,' is incorrect since nonmetals are generally poor conductors of electricity compared to metals.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access @ $99
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $149.99