HESI A2
Chemistry Hesi A2
1. Identify the type of reaction shown: 8Fe + S → 8FeS
- A. Single displacement
- B. Double displacement
- C. Synthesis
- D. Acid-base
Correct answer: C
Rationale: The reaction shown (8Fe + S → 8FeS) is a synthesis reaction. In a synthesis reaction, two or more substances combine to form a single compound. In this case, iron (Fe) and sulfur (S) combine to form iron sulfide (FeS). The key characteristic of a synthesis reaction is the formation of a single product from multiple reactants, which aligns with the given chemical equation. Choice A, single displacement, involves an element displacing another in a compound, which is not the case here. Choice B, double displacement, involves the exchange of ions between two compounds, which is also not happening in this reaction. Choice D, acid-base, refers to reactions between an acid and a base to form salt and water, which is not the case in the given equation.
2. What does a blood sample with a pH of 3 indicate?
- A. It is strongly acidic.
- B. It is strongly basic.
- C. It is weakly acidic.
- D. It is weakly basic.
Correct answer: A
Rationale: A blood pH of 3 is significantly low, indicating a strong acidity level. The normal blood pH range is 7.35 to 7.45; therefore, a pH of 3 is far below the normal range, showing a highly acidic condition in the blood sample. Choice B is incorrect because a pH of 3 is not basic at all. Choice C is incorrect as a pH of 3 is not weakly acidic but strongly acidic. Choice D is wrong as a blood pH of 3 does not indicate a weakly basic condition.
3. The molar mass of some gases is as follows: carbon monoxide—28.01 g/mol; helium—4.00 g/mol; nitrogen—28.01 g/mol; and oxygen—32.00 g/mol. Which would you expect to diffuse most rapidly?
- A. Carbon monoxide
- B. Helium
- C. Nitrogen
- D. Oxygen
Correct answer: B
Rationale: The rate of diffusion is inversely proportional to the molar mass of the gas. Helium has the lowest molar mass among the given gases, making it the lightest and fastest gas to diffuse. Therefore, helium would be expected to diffuse most rapidly compared to carbon monoxide, nitrogen, and oxygen. Carbon monoxide, nitrogen, and oxygen have higher molar masses than helium, so they would diffuse more slowly. Therefore, the correct answer is helium.
4. Aluminum (Al) has 13 protons in its nucleus. What is the number of electrons in an Al3+ ion?
- A. 16
- B. 13
- C. 10
- D. 3
Correct answer: C
Rationale: Aluminum (Al) has an atomic number of 13, which indicates it normally has 13 electrons to balance the 13 protons in its nucleus. When Al forms an Al3+ ion, it loses 3 electrons to achieve a stable electron configuration. Therefore, the Al3+ ion will have 13 - 3 = 10 electrons. Choice A (16) is incorrect as it doesn't take into account the charge of the Al3+ ion. Choice B (13) is incorrect because the Al3+ ion has lost electrons. Choice D (3) is incorrect as it doesn't reflect the total number of electrons lost by the Al atom to form the Al3+ ion.
5. A radioactive isotope has a half-life of 20 years. How many grams of a 6-gram sample will remain after 40 years?
- A. 8
- B. 6
- C. 3
- D. 1.5
Correct answer: C
Rationale: The half-life of a radioactive isotope is the time it takes for half of the original sample to decay. After each half-life period, half of the initial sample remains. In this case, after the first 20 years, half of the 6-gram sample (3 grams) will remain. After another 20 years (total of 40 years), half of the remaining 3 grams will remain, which is 1.5 grams. Therefore, 3 grams will be left after 40 years. Choice A is incorrect as it doesn't consider the concept of half-life and incorrectly suggests an increase in the sample. Choice B is incorrect as it assumes no decay over time. Choice D is incorrect as it miscalculates the remaining amount after two half-life periods.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access @ $99
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $149.99