HESI A2
Chemistry Hesi A2
1. Why does fluorine have a higher ionization energy than oxygen?
- A. Fluorine has a smaller number of neutrons.
- B. Fluorine has a larger number of neutrons.
- C. Fluorine has a smaller nuclear charge.
- D. Fluorine has a larger nuclear charge.
Correct answer: D
Rationale: Fluorine has a higher ionization energy than oxygen because fluorine has a larger nuclear charge. The greater number of protons in the nucleus of fluorine attracts its electrons more strongly, making it harder to remove an electron from a fluorine atom compared to an oxygen atom. Choice A is incorrect as the number of neutrons does not directly affect ionization energy. Choice B is also incorrect for the same reason. Choice C is incorrect because a smaller nuclear charge would result in lower ionization energy, not higher.
2. A chemist takes 100 mL of a 40 g NaCl solution and dilutes it to 1L. What is the concentration (molarity) of the new solution?
- A. 0.04 M NaCl
- B. 0.25 M NaCl
- C. 0.40 M NaCl
- D. 2.5 M NaCl
Correct answer: C
Rationale: Initially, the chemist has 40 g of NaCl in 100 mL of solution. To find the initial molarity, we need to calculate the number of moles of NaCl using the molar mass of NaCl (58.44 g/mol). After dilution to 1 L, the molarity of the new solution can be calculated by dividing the moles of NaCl by the total volume in liters. Therefore, the concentration (molarity) of the new solution is 0.40 M NaCl. Choice A (0.04 M NaCl) is incorrect because it doesn't consider the correct molar concentration after dilution. Choice B (0.25 M NaCl) is incorrect as it also doesn't account for the correct molar concentration post-dilution. Choice D (2.5 M NaCl) is incorrect as it is too concentrated given the initial amount of NaCl and the dilution factor.
3. Which of these intermolecular forces might represent attraction between atoms of a noble gas?
- A. Dipole-dipole interaction
- B. London dispersion force
- C. Keesom interaction
- D. Hydrogen bonding
Correct answer: B
Rationale: Noble gases are non-polar molecules without a permanent dipole moment. The only intermolecular force applicable to noble gases is the London dispersion force, also known as Van der Waals forces. This force is a temporary attractive force resulting from the formation of temporary dipoles in non-polar molecules. Dipole-dipole interactions, Keesom interactions, and hydrogen bonding involve significant dipoles or hydrogen atoms bonded to electronegative atoms, which do not apply to noble gases.
4. What is the correct electron configuration for carbon?
- A. 1s²2s²2p¹
- B. 1s²2s²2p²
- C. 1s²2s²2p³
- D. 1s²2s²2p⁶3s¹
Correct answer: B
Rationale: The correct electron configuration for carbon is 1s²2s²2p². This configuration indicates that there are 2 electrons in the first energy level (1s²), 2 electrons in the second energy level (2s²), and 2 electrons in the second energy level (2p²). It adheres to the aufbau principle, which states that electrons fill orbitals starting from the lowest energy level, and the Pauli exclusion principle, which states that each electron in an atom must have a unique set of quantum numbers. Choice A is incorrect because it does not fill the 2p orbital correctly. Choice C is incorrect as it exceeds the number of possible electrons in the 2p orbital. Choice D is incorrect as it includes an electron in the 3s orbital, which is not part of the electron configuration for carbon.
5. Which is a triatomic allotrope of oxygen?
- A. Ozone
- B. Water
- C. Acidic oxide
- D. Carbon dioxide
Correct answer: A
Rationale: Ozone (O3) is a triatomic allotrope of oxygen. It differs from the common diatomic oxygen molecule (O2) by having three oxygen atoms bonded together. Ozone is known for its protective role in the Earth's atmosphere, absorbing most of the Sun's harmful ultraviolet radiation. Water (H2O) is a compound composed of two hydrogen atoms and one oxygen atom. Acidic oxide and carbon dioxide are not triatomic allotropes of oxygen. Carbon dioxide consists of one carbon atom and two oxygen atoms, while acidic oxides refer to compounds where oxygen is bonded with other elements to form oxides, and they are not allotropes of oxygen.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access @ $99
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $149.99