HESI A2
HESI A2 Physics
1. An airplane travels 500 miles northeast and then, on the return trip, travels 500 miles southwest. Which of the following is true?
- A. The displacement of the plane is 1,000 miles, and the distance traveled is 0 miles.
- B. The displacement of the plane is 1,000 miles, and the distance traveled is 1,000 miles.
- C. The displacement of the plane is 0 miles, and the distance traveled is 0 miles.
- D. The displacement of the plane is 0 miles, and the distance traveled is 1,000 miles.
Correct answer: D
Rationale: The displacement of an object is the change in position from the starting point to the ending point, regardless of the path taken. In this case, the airplane returns to its original position after traveling 500 miles northeast and then 500 miles southwest. Therefore, the displacement is 0 miles. However, the distance traveled is the total path covered, which is 500 miles northeast plus 500 miles southwest, for a total of 1,000 miles. Choice A is incorrect because the displacement is not the sum of the distances traveled. Choice B is incorrect as it incorrectly states that both the displacement and the distance traveled are 1,000 miles. Choice C is incorrect as it states that both the displacement and the distance traveled are 0 miles, which is not the case.
2. A 10-kg object moving at 5 m/s has an impulse acted on it causing the velocity to change to 15 m/s. What was the impulse that was applied to the object?
- A. 10 kg⋅m/s
- B. 15 kg⋅m/s
- C. 20 kg⋅m/s
- D. 100 kg⋅m/s
Correct answer: D
Rationale: Impulse is the change in momentum of an object. The initial momentum is calculated as 10 kg × 5 m/s = 50 kg⋅m/s, and the final momentum is 10 kg × 15 m/s = 150 kg⋅m/s. The change in momentum (impulse) is 150 kg⋅m/s - 50 kg⋅m/s = 100 kg⋅m/s. Therefore, the impulse applied to the object is 100 kg⋅m/s. Choices A, B, and C are incorrect because they do not reflect the correct calculation of the impulse based on the change in momentum of the object.
3. A closed system undergoes a cyclic process, returning to its initial state. What can be said about the net work done (Wnet) by the system over the entire cycle?
- A. Wnet is always positive.
- B. Wnet is always negative.
- C. Wnet can be positive, negative, or zero.
- D. Wnet is equal to the total heat transferred into the system (dQ ≠ 0 for a cycle).
Correct answer: C
Rationale: For a closed system undergoing a cyclic process and returning to its initial state, the net work done (Wnet) over the entire cycle can be positive, negative, or zero. This is because the work done is determined by the area enclosed by the cycle on a P-V diagram, and this area can be above, below, or intersecting the zero work axis, leading to positive, negative, or zero net work done. Choice A is incorrect because Wnet is not always positive; it depends on the specific path taken on the P-V diagram. Choice B is incorrect as Wnet is not always negative; it varies based on the enclosed area. Choice D is incorrect because Wnet is not necessarily equal to the total heat transferred into the system; it depends on the specifics of the cycle and is not a direct relationship.
4. Why are boats more buoyant in salt water than in fresh water?
- A. Salt decreases the mass of the boats.
- B. Salt increases the volume of the water.
- C. Salt affects the density of the boats.
- D. Salt increases the density of the water.
Correct answer: D
Rationale: Salt increases the density of water, making saltwater more buoyant than freshwater. The higher density of saltwater provides more lift to a boat, enabling it to float more easily compared to in freshwater. Choice A is incorrect because salt does not affect the mass of the boats. Choice B is incorrect as salt does not increase the volume of water. Choice C is incorrect since salt affects the density of water, not the boats themselves. Therefore, the correct answer is that salt increases the density of the water, resulting in boats being more buoyant in salt water than in fresh water.
5. A solenoid is a long, tightly wound coil of wire that acts like a bar magnet when current flows through it. The magnetic field lines inside a solenoid are most similar to the field lines around:
- A. A single straight current-carrying wire
- B. A horseshoe magnet
- C. A permanent bar magnet
- D. A flat sheet conductor
Correct answer: C
Rationale: The magnetic field lines inside a solenoid resemble the field lines around a permanent bar magnet. Both a solenoid and a bar magnet have north and south poles, resulting in a similar pattern of magnetic field lines. A single straight current-carrying wire produces a different field pattern because it has no coil structure like a solenoid. A horseshoe magnet has a unique field shape due to its pole arrangement, different from the uniform field pattern of a solenoid. A flat sheet conductor does not exhibit the same magnetic field characteristics as a solenoid, as it lacks the coil shape and alignment of a solenoid's magnetic field.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access @ $99
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $149.99