hesi a2 physics HESI A2 Physics - Nursing Elites
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. A wave in a rope travels at 12 m/s and has a wavelength of 2 m. What is the frequency?

Correct answer: B

Rationale: The frequency of a wave is calculated using the formula: frequency = speed / wavelength. In this case, the speed of the wave is 12 m/s and the wavelength is 2 m. Therefore, the frequency is calculated as 12 m/s / 2 m = 6 Hz. Choice A (38.4 Hz), Choice C (4.6 Hz), and Choice D (3.75 Hz) are incorrect as they do not result from the correct calculation using the given values.

2. In an adiabatic process, there is:

Correct answer: A

Rationale: In an adiabatic process, choice A is correct because adiabatic processes involve no heat transfer between the system and its surroundings (Q = 0). This lack of heat transfer is a defining characteristic of adiabatic processes. Choices B, C, and D do not accurately describe an adiabatic process. Choice B refers to an isothermal process where temperature remains constant, not adiabatic. Choice C describes an isobaric process with constant pressure, not specific to adiabatic processes. Choice D mentions the conservation of energy but does not directly relate to the absence of heat transfer in adiabatic processes.

3. Two 5-ohm resistors are placed in series and wired into a 100-V power supply. What current flows through this circuit?

Correct answer: B

Rationale: In a series circuit, the total resistance is the sum of the individual resistances. Therefore, the total resistance in this circuit is 5 ohms + 5 ohms = 10 ohms. Using Ohm's Law (V = I × R), we can find the current (I) by dividing the voltage (V) by the total resistance (R). I = V / R = 100 V / 10 ohms = 10 A. Choice A (2 A) is incorrect because it does not account for the total resistance of the circuit. Choice C (20 A) and Choice D (50 A) are also incorrect as they provide values that are not consistent with the calculations based on the given values in the question.

4. Two objects attract each other with a gravitational force of 12 units. If you double the mass of both objects, what is the new force of attraction between them?

Correct answer: C

Rationale: The gravitational force between two objects is directly proportional to the product of their masses. When you double the masses of both objects, the force of attraction between them increases by a factor of 2 x 2 = 4. Therefore, the new force of attraction between the two objects will be 12 units x 4 = 24 units. Choices A, B, and D are incorrect because doubling the mass results in a quadruple increase in force, not a linear one.

5. What characterizes laminar flow?

Correct answer: A

Rationale: Laminar flow is characterized by the smooth, parallel movement of fluid particles along layers in a predictable manner. This flow regime occurs at low velocities and is in contrast to turbulent flow, where fluid particles exhibit erratic and chaotic motion. The viscosity of the fluid does not hinder laminar flow; instead, it influences the resistance to flow. Incompressibility is a property of fluids but does not specifically define laminar flow. Therefore, the correct answer is A as it accurately describes the behavior of fluid particles in laminar flow, making B, C, and D incorrect.

Similar Questions

According to the law of conservation of energy, energy:
In fluid dynamics, the continuity equation, a fundamental principle, expresses the conservation of:
During adiabatic compression of a gas, what happens to its temperature?
A 110-volt hair dryer delivers 1,525 watts of power. How many amperes does it draw?
In fluid machinery, pumps are designed to primarily increase the fluid's:
ATI TEAS 7 Exam Overview

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access @ $99

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A 2 Questions
  • 3,000 questions with answers
  • 90 days access @ $149.99