hesi a2 physics HESI A2 Physics - Nursing Elites
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. When the heat of a reaction is negative, which statement is true?

Correct answer: C

Rationale: When the heat of a reaction is negative, it indicates that the reaction releases energy in the form of heat. This means that the products have lower energy levels compared to the reactants. Lower energy levels are associated with greater stability in chemical systems. Therefore, when the heat of a reaction is negative, the products are more stable due to having less energy than the reactants. Choice A, stating that the products have less energy and are less stable, is incorrect as lower energy levels imply greater stability. Choice B, stating that the products have more energy and are more stable, is incorrect as lower energy levels lead to higher stability. Choice D, stating that the products have more energy and are less stable, is incorrect as lower energy levels are associated with higher stability.

2. A solenoid is a long, tightly wound coil of wire that acts like a bar magnet when current flows through it. The magnetic field lines inside a solenoid are most similar to the field lines around:

Correct answer: C

Rationale: The magnetic field lines inside a solenoid resemble the field lines around a permanent bar magnet. Both a solenoid and a bar magnet have north and south poles, resulting in a similar pattern of magnetic field lines. A single straight current-carrying wire produces a different field pattern because it has no coil structure like a solenoid. A horseshoe magnet has a unique field shape due to its pole arrangement, different from the uniform field pattern of a solenoid. A flat sheet conductor does not exhibit the same magnetic field characteristics as a solenoid, as it lacks the coil shape and alignment of a solenoid's magnetic field.

3. How do you determine the velocity of a wave?

Correct answer: A

Rationale: The velocity of a wave can be determined by multiplying the frequency of the wave by the wavelength. This relationship is given by the formula: velocity = frequency × wavelength. By multiplying the frequency by the wavelength, you can calculate the speed at which the wave is traveling. This formula is derived from the basic wave equation v = f × λ, where v represents velocity, f is frequency, and λ is wavelength. Therefore, to find the velocity of a wave, one must multiply its frequency by its wavelength. Choices B, C, and D are incorrect. Adding, subtracting, or dividing the frequency and wavelength does not yield the correct calculation for wave velocity. The correct formula for determining wave velocity is to multiply the frequency by the wavelength.

4. The operating principle of a metal detector relies on:

Correct answer: B

Rationale: The correct answer is B. Metal detectors work based on the principle of electromotive force induced by a changing magnetic field. When a metal object comes into contact with the detector's magnetic field, it disrupts the field, inducing a current in the metal that can be detected. This principle allows metal detectors to identify the presence of metallic objects without relying on the static presence of a permanent magnet, the high electrical conductivity of metals, or the thermal signature of the objects. Choice A is incorrect because metal detectors do not rely on a static magnet but on the interaction of metals with a changing magnetic field. Choice C is incorrect because while metals do have high electrical conductivity, this is not the principle underlying metal detectors. Choice D is incorrect because metal detectors do not operate based on the thermal signature of objects, but rather on their interaction with magnetic fields.

5. A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?

Correct answer: C

Rationale: To find the image distance of the candle, we use the mirror formula: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. In this case, the focal length f = 10 cm and the object distance do = 20 cm. Substituting these values into the formula gives us 1/10 = 1/20 + 1/di. Solving for di, we get di = 60 cm. Therefore, the image distance of the candle is 60 cm. Choice A (20 cm) is incorrect because it represents the object distance, not the image distance. Choice B (40 cm) is incorrect as it does not consider the mirror formula calculation. Choice D (75 cm) is incorrect as it does not match the correct calculation based on the mirror formula.

Similar Questions

A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?
Two objects attract each other with a gravitational force of 12 units. If you double the mass of both objects, what is the new force of attraction between them?
What characterizes laminar flow?
During an isothermal (constant temperature) expansion, what is the work done by the gas on the surroundings?
When two identical charged spheres, both positively charged, are brought close together, the electrostatic force between them will be:
ATI TEAS 7 Exam Overview

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access @ $99

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A 2 Questions
  • 3,000 questions with answers
  • 90 days access @ $149.99