HESI A2
HESI A2 Physics Practice Test
1. The efficiency (η) of a heat engine is defined as the ratio of the net work done (Wnet) by the engine to the heat input (Qh) from the hot reservoir. The relationship is expressed as:
- A. η = Wnet / Qh
- B. η = Qh / Wnet
- C. η = Wnet x Qh
- D. η = (Wnet + Qh) / 2
Correct answer: A
Rationale: The correct formula for efficiency (η) of a heat engine is η = Wnet / Qh. Efficiency is defined as the ratio of the net work done by the engine (Wnet) to the heat input from the hot reservoir (Qh). This formula shows how effectively the engine converts heat into useful work, making choice A the correct answer. Choices B, C, and D present incorrect relationships between efficiency, net work done, and heat input, leading to their incorrectness.
2. What is the kinetic energy of a 500-kg wagon moving at 10 m/s?
- A. 50 J
- B. 250 J
- C. 2.5 × 10^4 J
- D. 5.0 × 10^5 J
Correct answer: C
Rationale: The formula for calculating kinetic energy is KE = 0.5 × mass × velocity². Given the mass of the wagon is 500 kg and the velocity is 10 m/s, we can substitute these values into the formula: KE = 0.5 × 500 kg × (10 m/s)² = 0.5 × 500 kg × 100 m²/s² = 25,000 J or 2.5 × 10⁴ J. Therefore, the kinetic energy of the 500-kg wagon moving at 10 m/s is 2.5 × 10⁴ J. Choice A (50 J) is incorrect because it is too low; Choice B (250 J) is incorrect as it does not match the correct calculation; Choice D (5.0 × 10^5 J) is incorrect as it is too high. The correct answer is C (2.5 × 10^4 J).
3. According to Bernoulli's principle, when the flow velocity (v) of an incompressible fluid increases in a constricted pipe, the pressure (P) will:
- A. Depend on the specific fluid type
- B. Decrease
- C. Remain constant
- D. Increase
Correct answer: B
Rationale: Bernoulli's principle states that in a constricted pipe with increasing flow velocity of an incompressible fluid, the pressure decreases. This is due to the conservation of energy, where the total energy of the fluid (sum of kinetic energy, potential energy, and pressure energy) remains constant along the flow path. As the fluid velocity increases, its kinetic energy increases at the expense of pressure energy, causing a decrease in pressure. Therefore, the correct answer is B. Choices A, C, and D are incorrect. The pressure changes in the system are primarily driven by the fluid velocity and the conservation of energy principle, not by the specific fluid type, which is a constant. The pressure is not constant but decreases with increasing flow velocity due to the energy transformation occurring in the system. Lastly, the pressure does not increase; it decreases as the fluid velocity rises.
4. What is the SI unit for quantifying the transfer of energy due to an applied force?
- A. Newton (N)
- B. Meter per second (m/s)
- C. Joule (J)
- D. Kilogram (kg)
Correct answer: C
Rationale: The correct answer is C: Joule (J). The joule is the SI unit used to quantify the transfer of energy due to an applied force. It is defined as the work done when a force of one newton is applied over a distance of one meter. Newton (N) is the unit of force, not energy transfer. Meter per second (m/s) is the unit of speed, not energy transfer. Kilogram (kg) is the unit of mass, not energy transfer. Therefore, the correct unit for quantifying the transfer of energy due to an applied force is the joule (J).
5. Certain non-Newtonian fluids exhibit shear thickening behavior. In this case, the fluid's viscosity:
- A. Remains constant with increasing shear rate
- B. Decreases with increasing shear rate (shear thinning)
- C. Increases with increasing shear rate
- D. Depends solely on the applied pressure
Correct answer: C
Rationale: When a non-Newtonian fluid exhibits shear thickening behavior, its viscosity increases with increasing shear rate. This means that as more force is applied to the fluid, its resistance to flow also increases, resulting in a higher viscosity. This phenomenon is opposite to shear thinning, where viscosity decreases with increasing shear rate. Therefore, in the case of shear thickening behavior, the correct answer is that the fluid's viscosity increases with increasing shear rate. Choices A, B, and D are incorrect because shear thickening behavior specifically involves an increase in viscosity with increasing shear rate, not remaining constant, decreasing, or depending on applied pressure.
Similar Questions

Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access @ $99
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $149.99