HESI A2
HESI A2 Physics Practice Test
1. What is the phenomenon by which light bends as it passes through a prism known as?
- A. Reflection
- B. Electrical conduction
- C. Diffraction
- D. Refraction
Correct answer: D
Rationale: Refraction is the phenomenon by which light bends as it passes through a prism or any other medium boundary. When light transitions from one medium to another, such as air to glass in the case of a prism, it changes speed and direction due to the change in the medium's refractive index. This change in speed causes the light to bend. Reflection, on the other hand, is the bouncing back of light when it hits a surface. Diffraction refers to the bending of light around obstacles or through narrow openings. Electrical conduction involves the movement of electrically charged particles through a conductor, which is unrelated to the bending of light.
2. According to Bernoulli's principle, when the flow velocity (v) of an incompressible fluid increases in a constricted pipe, the pressure (P) will:
- A. Depend on the specific fluid type
- B. Decrease
- C. Remain constant
- D. Increase
Correct answer: B
Rationale: Bernoulli's principle states that in a constricted pipe with increasing flow velocity of an incompressible fluid, the pressure decreases. This is due to the conservation of energy, where the total energy of the fluid (sum of kinetic energy, potential energy, and pressure energy) remains constant along the flow path. As the fluid velocity increases, its kinetic energy increases at the expense of pressure energy, causing a decrease in pressure. Therefore, the correct answer is B. Choices A, C, and D are incorrect. The pressure changes in the system are primarily driven by the fluid velocity and the conservation of energy principle, not by the specific fluid type, which is a constant. The pressure is not constant but decreases with increasing flow velocity due to the energy transformation occurring in the system. Lastly, the pressure does not increase; it decreases as the fluid velocity rises.
3. Enthalpy (H) is a thermodynamic property defined as the sum of a system's internal energy (U) and the product of its pressure (P) and volume (V). The relationship between these is:
- A. H = U + PV
- B. H = U - PV
- C. H = U / PV
- D. H = PV / U
Correct answer: A
Rationale: Enthalpy (H) is defined as H = U + PV, where U represents internal energy, P is pressure, and V is volume. Enthalpy includes both the internal energy of a system and the energy required to create space for the system against an external pressure. Therefore, the correct relationship between enthalpy, internal energy, pressure, and volume is H = U + PV. Choice B is incorrect as subtracting PV would not account for the work done against pressure. Choice C is incorrect as dividing U by PV doesn't represent the definition of enthalpy. Choice D is incorrect as dividing PV by U is not the correct relationship based on the definition of enthalpy.
4. An object has a constant velocity of 50 m/s and travels for 10 s. What is the acceleration of the object?
- A. 0 m/s²
- B. 5 m/s²
- C. 60 m/s²
- D. 500 m/s²
Correct answer: A
Rationale: The acceleration of an object is defined as the rate of change of its velocity. When an object has a constant velocity, it means there is no change in its speed or direction. In this case, the object maintains a constant velocity of 50 m/s for 10 seconds, which implies that there is no change in velocity. Therefore, the acceleration of the object is 0 m/s² as there is no acceleration or deceleration happening. Choices B, C, and D are incorrect because acceleration is the change in velocity over time, and in this scenario of constant velocity, the acceleration is 0 m/s².
5. What is the kinetic energy of a 500-kg wagon moving at 10 m/s?
- A. 50 J
- B. 250 J
- C. 2.5 × 10^4 J
- D. 5.0 × 10^5 J
Correct answer: C
Rationale: The formula for calculating kinetic energy is KE = 0.5 × mass × velocity². Given the mass of the wagon is 500 kg and the velocity is 10 m/s, we can substitute these values into the formula: KE = 0.5 × 500 kg × (10 m/s)² = 0.5 × 500 kg × 100 m²/s² = 25,000 J or 2.5 × 10⁴ J. Therefore, the kinetic energy of the 500-kg wagon moving at 10 m/s is 2.5 × 10⁴ J. Choice A (50 J) is incorrect because it is too low; Choice B (250 J) is incorrect as it does not match the correct calculation; Choice D (5.0 × 10^5 J) is incorrect as it is too high. The correct answer is C (2.5 × 10^4 J).
Similar Questions

Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access @ $49
HESI A2 Premium
$99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $99