household alternating current typically has a frequency of 60 hz which statement is true
Logo

Nursing Elites

HESI A2

HESI A2 Physics Practice Test

1. Household alternating current typically has a frequency of 60 Hz. Which statement is true?

Correct answer: D

Rationale: The correct answer is D. Electrons complete a cycle 60 times per second when the frequency of the current is 60 Hz. This frequency indicates that the current changes direction 60 times per second, causing the electrons to complete a full cycle back and forth through the circuit at the same rate. Choice A is incorrect because the power rating of a bulb (in watts) is not directly related to the frequency of the current. Choice B is incorrect as typical household circuits do not carry currents as high as 60 amperes. Choice C is incorrect as the expected voltage drop is not measured in volts per meter for household alternating current circuits.

2. The Reynolds number (Re) is a dimensionless quantity used to characterize:

Correct answer: B

Rationale: The Reynolds number is a dimensionless quantity used to characterize the flow regime, specifically whether it is laminar (smooth) or turbulent (chaotic). It depends on the velocity of the fluid, its characteristic length (such as pipe diameter), and its viscosity. A low Reynolds number indicates laminar flow, while a high Reynolds number suggests turbulence. Choices A, C, and D are incorrect because the Reynolds number is not related to fluid density, surface tension effects, or buoyancy force magnitude.

3. A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?

Correct answer: D

Rationale: Work done is calculated using the formula: Work = Force x Distance. In this case, the force applied is 15 N and the distance covered is 3 m. Thus, work done = 15 N x 3 m = 45 N⋅m. Therefore, the correct answer is 45 N⋅m. Choice A (5 W) is incorrect because work is measured in joules (J) or newton-meters (N⋅m), not in watts (W). Choice B (5 N⋅m) is incorrect as it miscalculates the work by not multiplying the force by the distance. Choice C (45 W) is incorrect because work is not measured in watts (W) but in newton-meters (N⋅m).

4. Which conclusion can be drawn from Ohm’s law?

Correct answer: B

Rationale: Ohm's law states that the ratio of the potential difference (voltage) between the ends of a conductor to the current flowing through it is a constant. Mathematically, this is represented as V = I x R, where V is voltage, I is current, and R is the constant resistance. Therefore, the correct conclusion that can be drawn from Ohm's law is that the ratio of the potential difference between the ends of a conductor to current is a constant, denoted as R. This relationship is fundamental to understanding the behavior of electrical circuits and the effect of resistance on voltage and current. Choice A is incorrect because Ohm's law actually states that voltage and current are directly proportional when resistance is constant. Choice C is incorrect because voltage is not the amount of charge that passes through a point per second; rather, it is the electric potential energy per unit charge. Choice D is incorrect because although power (P) can be calculated by multiplying current (I) by voltage (V), this is not a conclusion directly drawn from Ohm's law.

5. An object with a charge of 4 μC is placed 1 meter from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?

Correct answer: A

Rationale: To find the magnitude of the resulting force between two charges, we can use Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. The formula for Coulomb's law is: F = k × (|q1 × q2| / r²), where F is the force, k is the Coulomb constant, q1 and q2 are the charges, and r is the distance between the charges. Substituting the given values into the formula: F = (9 × 10⁹ N·m²/C²) × ((4 × 10⁻⁶ C) × (2 × 10⁻⁶ C) / (1 m)²) = 0.04 N. Therefore, the magnitude of the resulting force between the objects is 0.04 N.

Similar Questions

An object with a mass of 45 kg has momentum equal to 180 kg⋅m/s. What is the object’s velocity?
Four 5 V batteries are connected in series. What is the total voltage of the circuit?
An object with a charge of 4 μC is placed 50 cm from another object with a charge twice as great. What is the magnitude of the resulting repulsive force?
A 2,000-kg car travels at 15 m/s. For a 1,500-kg car traveling at 15 m/s to generate the same momentum, what would need to happen?
For a compressible fluid subjected to rapid pressure changes, sound wave propagation becomes important. The speed of sound (c) depends on the fluid's:

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses