HESI A2
Chemistry HESI A2 Practice Test
1. Carbon-12 and carbon-14 are isotopes. What do they have in common?
- A. Number of nuclear particles
- B. Number of protons
- C. Number of neutrons
- D. Mass number
Correct answer: C
Rationale: Isotopes are atoms of the same element with the same number of protons (which determines the element) but different numbers of neutrons. Both carbon-12 and carbon-14 have 6 protons (hence they are both carbon atoms) but different numbers of neutrons: carbon-12 has 6 neutrons, while carbon-14 has 8 neutrons. Therefore, the correct answer is the number of neutrons. Choices A, B, and D are incorrect because isotopes may have different numbers of nuclear particles (protons + neutrons), protons, and mass numbers, respectively.
2. What is the oxidation state of the chlorine atom in the compound HCl?
- A. +1
- B. -1
- C. +2
- D. -2
Correct answer: B
Rationale: In the compound HCl (hydrochloric acid), the hydrogen atom has an oxidation state of +1 based on the rules of assigning oxidation states. Since the overall compound is neutral, the oxidation state of chlorine must be -1 to balance the charge. Chlorine typically has an oxidation state of -1 in binary compounds with nonmetals, such as HCl. Therefore, the correct answer is -1. Choices A, C, and D are incorrect as the oxidation state of chlorine in HCl is -1, not +1, +2, or -2.
3. Which is a property of an ionic compound?
- A. Low melting point
- B. Poor conductivity
- C. Shared electrons
- D. Crystalline shape
Correct answer: D
Rationale: Ionic compounds are composed of positively and negatively charged ions that are held together by strong electrostatic forces. These ions arrange themselves in a repeating pattern to form a stable and orderly structure known as a crystalline shape. This is a characteristic property of ionic compounds, making choice D the correct answer. Choices A, B, and C are incorrect because ionic compounds typically have high melting points, good conductivity in the molten or dissolved state, and do not involve shared electrons but rather the transfer of electrons between atoms.
4. To the nearest whole number, what is the mass of one mole of water?
- A. 16 g/mol
- B. 18 g/mol
- C. 20 g/mol
- D. 22 g/mol
Correct answer: B
Rationale: The molar mass of water (H₂O) is calculated by adding the atomic masses of two hydrogen atoms (each with a molar mass of approximately 1 g/mol) and one oxygen atom (with a molar mass of approximately 16 g/mol). Therefore, the molar mass of water is approximately 18 g/mol, making choice B the correct answer. Choice A (16 g/mol) is incorrect because it represents the molar mass of oxygen, not water. Choices C (20 g/mol) and D (22 g/mol) are incorrect as they do not correspond to the molar mass of water.
5. A salt solution has a molarity of 5 M. How many moles of this salt are present in 0 L of this solution?
- A. 0
- B. 1.5
- C. 2
- D. 3
Correct answer: A
Rationale: Molarity is defined as the number of moles of solute per liter of solution. A molarity of 5 M indicates there are 5 moles of salt in 1 liter of the solution. Since the volume of the solution is 0 liters, multiplying the molarity by 0 liters results in 0 moles of salt (5 moles/L x 0 L = 0 moles). Therefore, the correct answer is 0. Option B, 1.5, is incorrect because it doesn't consider the volume being 0 liters. Options C and D, 2 and 3 respectively, are also incorrect as they do not account for the zero volume of the solution. Hence, there are no moles of salt present in 0 liters of the solution.
Similar Questions

Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access @ $49
HESI A2 Premium
$99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $99