HESI A2
HESI A2 Chemistry
1. Here are the solubilities of four substances at 0°C, in grams of solute per 100 mL of water. If the temperature increases to 20°C, what would you expect to happen to the solubility figures?
- A. Citric acid and potassium phosphate will decrease; nitrogen and oxygen will increase.
- B. Citric acid and potassium phosphate will increase; nitrogen and oxygen will decrease.
- C. All four figures will increase.
- D. All four figures will decrease.
Correct answer: C
Rationale: Solubility generally tends to increase with temperature for most solid solutes in liquid solvents due to higher kinetic energy leading to better solute-solvent interactions. As the temperature increases from 0°C to 20°C, all four solubility figures are expected to increase. Choice A is incorrect because solubility tends to increase with temperature. Choice B is incorrect as well for the same reason. Choice D is incorrect because the solubility of solid solutes typically increases with temperature.
2. Which two elements are most alike in reactivity?
- A. He and H
- B. K and Ar
- C. Cl and P
- D. Ba and Mg
Correct answer: C
Rationale: Chlorine (Cl) and Phosphorus (P) are most alike in reactivity among the given pairs. Both elements are nonmetals and belong to Group 7 (halogens) and Group 15 (nitrogen group), respectively. They have similar electronic configurations and can form compounds by gaining or sharing electrons. Chlorine is highly reactive and can easily form ionic compounds, while phosphorus also shows a range of reactivity in its compounds. Choice A (He and H) is incorrect because helium (He) is a noble gas and hydrogen (H) is a nonmetal, so they are not similar in reactivity. Choice B (K and Ar) is incorrect as potassium (K) is a metal and argon (Ar) is a noble gas, having different reactivities. Choice D (Ba and Mg) is incorrect because barium (Ba) and magnesium (Mg) are both metals, but their reactivities differ due to their positions in the periodic table.
3. Which of these elements has the greatest atomic mass?
- A. Au
- B. Ba
- C. I
- D. W
Correct answer: D
Rationale: Among the elements listed, Tungsten (W) has the greatest atomic mass. The atomic mass of Tungsten is approximately 183.84 atomic mass units (amu), while the atomic masses of the other elements listed are as follows: Gold (Au) is around 196.97 amu, Barium (Ba) is approximately 137.33 amu, and Iodine (I) is about 126.90 amu. Therefore, Tungsten (W) has the greatest atomic mass out of the given elements. Gold (Au) has a higher atomic mass than Barium (Ba) and Iodine (I), making choices A, B, and C incorrect.
4. What is the correct electron configuration for magnesium?
- A. 1s² 2s²
- B. 1s² 2s² 2p⁶
- C. 1s² 2s² 2p⁶ 3s²
- D. 1s² 2s² 2p⁶ 3s² 3p¹
Correct answer: C
Rationale: The electron configuration of an element is determined by following the Aufbau principle, which states that electrons fill orbitals starting from the lowest energy level. Magnesium has an atomic number of 12, meaning it has 12 electrons. The electron configuration of magnesium fills the 1s, 2s, 2p, and 3s orbitals to accommodate all 12 electrons. Therefore, the correct electron configuration for magnesium is 1s² 2s² 2p⁶ 3s². Choice A is incorrect as it only includes 4 electrons and stops at the 2s orbital. Choice B is incorrect as it includes 8 electrons and stops at the 2p orbital. Choice D is incorrect as it includes 13 electrons and extends to the 3p orbital, which is beyond the actual electron configuration of magnesium.
5. What is the energy required to remove the outermost electron from an atom called?
- A. covalent bonding
- B. electronegativity
- C. atomic radius
- D. ionization energy
Correct answer: D
Rationale: Ionization energy is the energy needed to remove the outermost electron from an atom, resulting in the formation of a positively charged ion. The higher the ionization energy, the more difficult it is to extract an electron. Electronegativity, however, measures an atom's ability to attract shared electrons in a chemical bond. Atomic radius refers to the distance from the nucleus to the outermost electron. Covalent bonding involves sharing electron pairs between atoms to create a stable bond. Therefore, the correct answer is ionization energy as it specifically relates to the energy needed to remove an electron from an atom.
Similar Questions

Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access @ $99
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A 2 Questions
- 3,000 questions with answers
- 90 days access @ $149.99