HESI A2
HESI A2 Physics
1. During an isothermal (constant temperature) expansion, what is the work done by the gas on the surroundings?
- A. Positive and equal to the change in internal energy.
- B. Zero.
- C. Negative and equal to the change in internal energy.
- D. Positive and greater than the change in internal energy.
Correct answer: D
Rationale: In an isothermal expansion, the temperature remains constant, meaning there is no change in internal energy. However, the gas still does work on the surroundings as it expands, and this work is positive. Since internal energy does not change, the correct answer is D, 'Positive and greater than the change in internal energy.' Choice A is incorrect because the work done is not equal to the change in internal energy. Choice B is incorrect as work is done during the expansion. Choice C is incorrect since the work done is not negative during an isothermal expansion.
2. In an electrically neutral atom, the number of:
- A. Electrons is equal to protons
- B. Protons is equal to neutrons
- C. Neutrons are always greater than protons
- D. Electrons are always less than protons
Correct answer: A
Rationale: In an electrically neutral atom, the number of electrons is equal to the number of protons. Electrons carry a negative charge, protons carry a positive charge, and neutrons are neutral. Since the atom is electrically neutral, the positive charge of the protons must balance the negative charge of the electrons, making the numbers of electrons and protons equal. Choice B is incorrect because protons are not equal to neutrons in an atom. Choice C is incorrect because neutrons are not always greater than protons, and choice D is incorrect because electrons are not always less than protons in an atom.
3. In fluid machinery, pumps are designed to primarily increase the fluid's:
- A. Pressure
- B. Velocity only
- C. Both pressure and velocity
- D. Neither pressure nor velocity
Correct answer: A
Rationale: Pumps in fluid machinery are designed to primarily increase the fluid's pressure. This increase in pressure allows the fluid to flow through the system efficiently and overcome resistance. While pumps can also impact the velocity of the fluid to some extent, their main function is to elevate the pressure to facilitate the movement of the fluid within the system. Choice B is incorrect because pumps do not focus solely on increasing velocity. Choice C is incorrect as while pumps can affect velocity, their primary purpose is to boost pressure. Choice D is incorrect as pumps aim to increase either the pressure, velocity, or both.
4. Two balloons with charges of 5 μC each are placed 25 cm apart. What is the magnitude of the resulting repulsive force between them?
- A. 0.18 N
- B. 1.8 N
- C. 10−3 N
- D. 5 × 10−3 N
Correct answer: B
Rationale: To find the repulsive force between the two charges, we use Coulomb's law: F = k(q1 * q2) / r^2. Here, k is the Coulomb constant (8.99 x 10^9 Nm^2/C^2), q1 and q2 are the charges (5 μC each), and r is the distance between the charges (25 cm = 0.25 m). Substituting these values into the formula: F = (8.99 x 10^9 Nm^2/C^2)(5 x 10^-6 C)(5 x 10^-6 C) / (0.25 m)^2. Calculating this gives F = 1.8 N. Therefore, the magnitude of the resulting repulsive force between the two balloons is 1.8 N. Choice A, C, and D are incorrect as they do not correctly calculate the force using Coulomb's law.
5. What is the mathematical expression for work (W)?
- A. W = F / d
- B. W = F x d
- C. W = d / F
- D. W = F^2 x d
Correct answer: B
Rationale: The correct formula for work (W) is given by the equation W = F x d, where F represents force and d represents the displacement in the direction of the force. Work is calculated by multiplying the force applied by the distance over which the force is applied. Choice A (W = F / d) is incorrect as work is not calculated by dividing force by distance. Choice C (W = d / F) is incorrect because work is not calculated by dividing distance by force. Choice D (W = F^2 x d) is incorrect as work is not calculated by squaring the force and then multiplying by distance.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access