HESI A2
HESI A2 Physics
1. During an isothermal (constant temperature) expansion, what is the work done by the gas on the surroundings?
- A. Positive and equal to the change in internal energy.
- B. Zero.
- C. Negative and equal to the change in internal energy.
- D. Positive and greater than the change in internal energy.
Correct answer: D
Rationale: In an isothermal expansion, the temperature remains constant, meaning there is no change in internal energy. However, the gas still does work on the surroundings as it expands, and this work is positive. Since internal energy does not change, the correct answer is D, 'Positive and greater than the change in internal energy.' Choice A is incorrect because the work done is not equal to the change in internal energy. Choice B is incorrect as work is done during the expansion. Choice C is incorrect since the work done is not negative during an isothermal expansion.
2. The drag force (F_d) experienced by an object moving through a fluid depends on:
- A. Object's shape and size only
- B. Fluid properties and object velocity
- C. Depth of submersion only
- D. Buoyant force acting on the object
Correct answer: B
Rationale: The drag force experienced by an object moving through a fluid depends on multiple factors, including the object's shape, size, velocity, and the fluid's properties such as viscosity and density. Choices A, C, and D are incorrect because drag force is not solely determined by the object's shape and size, depth of submersion, or buoyant force acting on the object. The primary factors affecting drag force are the fluid properties and the object's velocity. Therefore, the correct answer is B.
3. Which of the following is NOT a mode of heat transfer between a system and its surroundings?
- A. Conduction
- B. Convection
- C. Radiation
- D. Isothermalization
Correct answer: A
Rationale: Isothermalization is not a mode of heat transfer. The three main modes of heat transfer are conduction (through direct contact), convection (through fluid motion), and radiation (through electromagnetic waves). In this question, choice A, conduction, is not a mode of heat transfer between a system and its surroundings. Conduction refers to heat transfer through direct contact between particles, without the movement of the particles themselves. Therefore, A is the correct answer. Choices B, C, and D are incorrect as they represent valid modes of heat transfer.
4. Which characteristic does a transverse wave not have?
- A. a compression
- B. an amplitude
- C. a frequency
- D. a wavelength
Correct answer: A
Rationale: A transverse wave does not have a compression because transverse waves move perpendicular to the direction of the oscillation. In a transverse wave, the particles move up and down, causing crests and troughs, without creating compressions. Compressions are characteristic of longitudinal waves where the particles move parallel to the direction of the wave. The other choices (B, C, and D) are characteristics that transverse waves possess: amplitude is the maximum displacement of a wave from its equilibrium position, frequency is the number of complete oscillations a wave makes in a given time, and wavelength is the distance between two consecutive points in a wave that are in the same phase.
5. The specific heat capacity of tin is 217 J/(g°C). Which of these materials would require about twice as much heat as tin to increase the temperature of a sample by 1°C?
- A. Copper [0.3844 J/(g°C)]
- B. Iron [0.449 J/(g°C)]
- C. Gold [0.1291 J/(g°C)]
- D. Aluminum [0.904 J/(g°C)]
Correct answer: D
Rationale: The correct answer is D: Aluminum. The specific heat capacity of aluminum is 0.904 J/(g°C), which is approximately 4 times that of tin. For a material to require about twice as much heat as tin to increase the temperature by 1°C, it should have a specific heat capacity roughly double that of tin. Therefore, aluminum fits this criterion better than the other options. Gold has a much lower specific heat capacity than tin, so it would require less, not more, heat to increase the temperature by 1°C. Copper and Iron also have specific heat capacities lower than tin, making them incorrect choices for requiring twice as much heat as tin.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access