HESI A2
HESI A2 Physics
1. A bicycle and a car are both traveling at a rate of 5 m/s. Which statement is true?
- A. The bicycle has more kinetic energy than the car.
- B. The bicycle has less kinetic energy than the car.
- C. Both vehicles have the same amount of kinetic energy.
- D. Only the car has kinetic energy.
Correct answer: B
Rationale: Kinetic energy is determined by both the mass and the velocity of an object. While both the bicycle and the car are moving at the same velocity (5 m/s), the car has significantly more mass than the bicycle. As a result, the car has more kinetic energy than the bicycle, even though their speeds are identical. Therefore, choice B is correct. Choices A, C, and D are incorrect because they do not consider the influence of mass on kinetic energy. Choice A is incorrect as the car has more kinetic energy due to its greater mass. Choice C is incorrect because the vehicles have different masses. Choice D is incorrect as both the bicycle and the car possess kinetic energy.
2. Energy manifests in various forms. Which of the following is NOT considered a fundamental energy type?
- A. Thermal energy
- B. Momentum
- C. Sound energy
- D. Chemical energy
Correct answer: B
Rationale: The correct answer is B. Momentum is not considered a form of energy; it is a property of moving objects. Thermal, sound, and chemical energy are all forms of energy. Thermal energy is the energy associated with the movement of particles within an object. Sound energy is produced by vibrations and travels through materials as waves. Chemical energy is stored within the bonds of chemical compounds. While momentum is a crucial concept in physics, it is not a fundamental form of energy.
3. The Reynolds number (Re) is a dimensionless quantity used to characterize:
- A. Fluid density
- B. Flow regime (laminar vs. turbulent)
- C. Surface tension effects
- D. Buoyancy force magnitude
Correct answer: B
Rationale: The Reynolds number is a dimensionless quantity used to characterize the flow regime, specifically whether it is laminar (smooth) or turbulent (chaotic). It depends on the velocity of the fluid, its characteristic length (such as pipe diameter), and its viscosity. A low Reynolds number indicates laminar flow, while a high Reynolds number suggests turbulence. Choices A, C, and D are incorrect because the Reynolds number is not related to fluid density, surface tension effects, or buoyancy force magnitude.
4. Entropy (S) is a thermodynamic property related to the system's disorder. According to the second law of thermodynamics, in a spontaneous process:
- A. The total entropy of the system and surroundings increases.
- B. The total entropy of the system and surroundings decreases.
- C. The total entropy of the system remains constant.
- D. The total entropy of the surroundings increases, while the system's entropy decreases.
Correct answer: A
Rationale: The second law of thermodynamics asserts that the entropy of an isolated system (or the combined system and surroundings) will always increase in a spontaneous process, reflecting an increase in disorder. Therefore, the correct answer is that the total entropy of the system and surroundings increases. Choice B is incorrect because entropy always tends to increase in a spontaneous process, as dictated by the second law of thermodynamics. Choice C is incorrect as entropy typically increases in natural processes. Choice D is incorrect because the second law of thermodynamics states that the total entropy of the system and surroundings always increases in a spontaneous process.
5. Which substance would be most affected by a change in temperature?
- A. Liquid nitrogen
- B. Salt crystals
- C. Hydrogen gas
- D. Iron filings
Correct answer: C
Rationale: Hydrogen gas would be most affected by a change in temperature because gases have a greater expansion or contraction in volume with changes in temperature compared to liquids or solids. When the temperature of hydrogen gas increases, its molecules gain kinetic energy and move faster, causing the gas to expand and its volume to increase. Conversely, when the temperature decreases, the gas molecules lose kinetic energy and move slower, leading to a decrease in volume. This property makes hydrogen gas highly sensitive to temperature changes compared to liquid nitrogen, salt crystals, or iron filings. Liquid nitrogen, salt crystals, and iron filings are less affected by temperature changes because their particles are closer together and have lower kinetic energy, resulting in minimal volume changes with temperature fluctuations.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access