a bicycle and a car are both traveling at a rate of 5 ms which statement is true
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. A bicycle and a car are both traveling at a rate of 5 m/s. Which statement is true?

Correct answer: B

Rationale: Kinetic energy is determined by both the mass and the velocity of an object. While both the bicycle and the car are moving at the same velocity (5 m/s), the car has significantly more mass than the bicycle. As a result, the car has more kinetic energy than the bicycle, even though their speeds are identical. Therefore, choice B is correct. Choices A, C, and D are incorrect because they do not consider the influence of mass on kinetic energy. Choice A is incorrect as the car has more kinetic energy due to its greater mass. Choice C is incorrect because the vehicles have different masses. Choice D is incorrect as both the bicycle and the car possess kinetic energy.

2. A rock has a volume of 6 cm3 and a mass of 24 g. What is its density?

Correct answer: A

Rationale: Density is calculated by dividing the mass of an object by its volume. In this case, the mass of the rock is 24 g and its volume is 6 cm3. By dividing 24 g by 6 cm3, we find that the density of the rock is 4 g/cm3. Choice A is the correct answer because density is expressed in units of mass per unit volume (g/cm3). Choice B is incorrect as it represents the reciprocal of density. Choices C and D are significantly higher values and do not match the calculated density of the rock.

3. A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?

Correct answer: C

Rationale: To find the image distance of the candle, we use the mirror formula: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. In this case, the focal length f = 10 cm and the object distance do = 20 cm. Substituting these values into the formula gives us 1/10 = 1/20 + 1/di. Solving for di, we get di = 60 cm. Therefore, the image distance of the candle is 60 cm. Choice A (20 cm) is incorrect because it represents the object distance, not the image distance. Choice B (40 cm) is incorrect as it does not consider the mirror formula calculation. Choice D (75 cm) is incorrect as it does not match the correct calculation based on the mirror formula.

4. Cavitation is a phenomenon observed in fluids when the pressure falls below its:

Correct answer: D

Rationale: Cavitation is a phenomenon where vapor bubbles form in a fluid due to pressure dropping below the vapor pressure of the liquid. When this occurs, the bubbles collapse, creating intense shock waves. The pressure falling below the vapor pressure is what triggers cavitation, not the boiling point, density, or freezing point of the fluid. Therefore, the correct answer is 'Vapor pressure,' as it directly relates to the pressure threshold required for cavitation to happen.

5. A wave moves through its medium at 20 m/s with a wavelength of 4 m. What is the frequency of the wave?

Correct answer: C

Rationale: The formula to calculate the frequency of a wave is given by:

Similar Questions

A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?
In an electrically neutral atom, the number of:
An airplane travels 500 miles northeast and then, on the return trip, travels 500 miles southwest. Which of the following is true?
Given the four wires described here, which would you expect to have the greatest resistance?
In a static fluid, pressure (P) at a depth (h) is governed by the hydrostatic equation:

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses