a box is moved by a 15 n force over a distance of 3 m what is the amount of work that has been done
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?

Correct answer: D

Rationale: Work done is calculated using the formula: Work = Force x Distance. In this case, the force applied is 15 N and the distance covered is 3 m. Thus, work done = 15 N x 3 m = 45 N⋅m. Therefore, the correct answer is 45 N⋅m. Choice A (5 W) is incorrect because work is measured in joules (J) or newton-meters (N⋅m), not in watts (W). Choice B (5 N⋅m) is incorrect as it miscalculates the work by not multiplying the force by the distance. Choice C (45 W) is incorrect because work is not measured in watts (W) but in newton-meters (N⋅m).

2. An object with a mass of 45 kg has momentum equal to 180 kg⋅m/s. What is the object’s velocity?

Correct answer: A

Rationale: The momentum of an object is calculated by multiplying its mass and velocity. Mathematically, momentum = mass x velocity. Given that the mass is 45 kg and the momentum is 180 kg⋅m/s, we can rearrange the formula to solve for velocity: velocity = momentum / mass. Plugging in the values, velocity = 180 kg⋅m/s / 45 kg = 4 m/s. Therefore, the object's velocity is 4 m/s. Choices B, C, and D are incorrect because they do not align with the correct calculation based on the given mass and momentum values.

3. A constant force is exerted on a stationary object. In this scenario, work is:

Correct answer: B

Rationale: Work is only done when a force causes displacement. Since the object is stationary, no displacement occurs, and therefore, no work is performed. Choice A is incorrect because work requires both force and displacement. Choice C is incorrect as there is no partial work - work is either done or not done. Choice D is incorrect as the scenario provided is clear - the object is stationary, so no work is being performed.

4. Diamagnetism refers to a material's weak:

Correct answer: B

Rationale: Diamagnetism refers to a material's weak repulsion to magnetic fields. When diamagnetic materials are placed in an external magnetic field, they create an opposing magnetic field, leading to repulsion. This is why choice B, 'Repulsion to magnetic fields,' is the correct answer. Choices A, C, and D are incorrect because diamagnetic materials do not exhibit attraction, amplification, or indifference to magnetic fields.

5. Fluids can be categorized based on their shear stress-strain rate relationship. An ideal fluid exhibits:

Correct answer: A

Rationale: An ideal fluid, often referred to as an inviscid fluid, is a theoretical concept used in fluid mechanics to simplify calculations. It is characterized by having zero shear stress at any strain rate. In reality, such fluids do not exist, but they serve as a useful starting point for understanding fluid behavior in idealized situations. Choice B is incorrect because a linear relationship between shear stress and strain rate defines a Newtonian fluid, not an ideal fluid. Choice C is incorrect because a non-linear relationship between shear stress and strain rate characterizes Non-Newtonian fluids, not ideal fluids. Choice D is incorrect because the high dependence of viscosity on temperature is a characteristic seen in real fluids and does not define an ideal fluid.

Similar Questions

Why are boats more buoyant in salt water than in fresh water?
A hummingbird’s wings beat at 25 beats per second. What is the period of the wing beating in seconds?
An electromagnet is holding a 1,500-kg car at a height of 25 m above the ground. The magnet then experiences a power outage, and the car falls to the ground. Which of the following is false?
Why doesn’t a raindrop accelerate as it approaches the ground?
Certain non-Newtonian fluids exhibit shear thickening behavior. In this case, the fluid's viscosity:

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses