HESI A2
HESI A2 Physics
1. A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?
- A. 5 W
- B. 5 N⋅m
- C. 45 W
- D. 45 N⋅m
Correct answer: D
Rationale: Work done is calculated using the formula: Work = Force x Distance. In this case, the force applied is 15 N and the distance covered is 3 m. Thus, work done = 15 N x 3 m = 45 N⋅m. Therefore, the correct answer is 45 N⋅m. Choice A (5 W) is incorrect because work is measured in joules (J) or newton-meters (N⋅m), not in watts (W). Choice B (5 N⋅m) is incorrect as it miscalculates the work by not multiplying the force by the distance. Choice C (45 W) is incorrect because work is not measured in watts (W) but in newton-meters (N⋅m).
2. Faraday's law of electromagnetic induction states that a changing magnetic field in a conductor induces a/an:
- A. Increase in resistance
- B. Electromotive force
- C. Static electric charge
- D. Decrease in capacitance
Correct answer: B
Rationale: Faraday's law of electromagnetic induction states that a changing magnetic field induces an electromotive force in a conductor. This electromotive force is responsible for generating electricity in power plants and various electrical devices. The induced current is a result of the changing magnetic field, not an increase in resistance (choice A), static electric charge (choice C), or a decrease in capacitance (choice D). Hence, the correct answer is B.
3. When a charged particle moves through a vacuum at a constant speed, it generates:
- A. An electric field only
- B. A magnetic field only
- C. Both an electric and magnetic field
- D. Neither an electric nor magnetic field
Correct answer: C
Rationale: A moving charged particle generates both an electric field and a magnetic field. The electric field is due to the charge itself, and the magnetic field is produced by the motion of the charge. Choice A is incorrect because a moving charged particle also generates a magnetic field. Choice B is incorrect because a moving charged particle generates both electric and magnetic fields. Choice D is incorrect as a moving charged particle generates fields due to its charge and motion.
4. In an adiabatic process, there is:
- A. No heat transfer (Q = 0) between the system and the surroundings.
- B. Isothermal compression or expansion (constant temperature).
- C. Constant pressure throughout the process (isobaric process).
- D. No change in the system's internal energy (energy is conserved according to the first law).
Correct answer: A
Rationale: In an adiabatic process, choice A is correct because adiabatic processes involve no heat transfer between the system and its surroundings (Q = 0). This lack of heat transfer is a defining characteristic of adiabatic processes. Choices B, C, and D do not accurately describe an adiabatic process. Choice B refers to an isothermal process where temperature remains constant, not adiabatic. Choice C describes an isobaric process with constant pressure, not specific to adiabatic processes. Choice D mentions the conservation of energy but does not directly relate to the absence of heat transfer in adiabatic processes.
5. Which mathematical quantity is scalar?
- A. Distance
- B. Velocity
- C. Acceleration
- D. Displacement
Correct answer: A
Rationale: Distance is a scalar quantity because it has only magnitude and no direction. It is simply the total length of the path travelled by an object. Scalars are quantities that are fully described by their magnitude alone, without any reference to direction. Velocity and acceleration are vector quantities as they have both magnitude and direction. Displacement is also a vector quantity as it is the change in position of an object and includes both magnitude and direction.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access