HESI A2
HESI A2 Physics Quizlet
1. The triple point of a substance is the specific temperature and pressure at which all three phases (solid, liquid, and gas) can coexist in thermodynamic equilibrium. Which of the following statements about the triple point is true?
- A. It can vary depending on the container size.
- B. It is a unique point for each pure substance.
- C. The pressure at the triple point can be zero for some substances.
- D. The temperature at the triple point can be above the boiling point of the liquid phase.
Correct answer: B
Rationale: The triple point is a unique temperature and pressure where all three phases (solid, liquid, and gas) of a pure substance can coexist in equilibrium. It is a constant for each substance and independent of container size. Choice A is incorrect because the triple point is a fixed point regardless of the container size. Choice C is incorrect as the pressure at the triple point is specific for each substance and will not be zero unless the substance has unique properties. Choice D is incorrect since the temperature at the triple point is precisely defined and cannot be above the boiling point of the liquid phase.
2. An airplane travels 500 miles northeast and then, on the return trip, travels 500 miles southwest. Which of the following is true?
- A. The displacement of the plane is 1,000 miles, and the distance traveled is 0 miles.
- B. The displacement of the plane is 1,000 miles, and the distance traveled is 1,000 miles.
- C. The displacement of the plane is 0 miles, and the distance traveled is 0 miles.
- D. The displacement of the plane is 0 miles, and the distance traveled is 1,000 miles.
Correct answer: D
Rationale: The displacement of an object is the change in position from the starting point to the ending point, regardless of the path taken. In this case, the airplane returns to its original position after traveling 500 miles northeast and then 500 miles southwest. Therefore, the displacement is 0 miles. However, the distance traveled is the total path covered, which is 500 miles northeast plus 500 miles southwest, for a total of 1,000 miles. Choice A is incorrect because the displacement is not the sum of the distances traveled. Choice B is incorrect as it incorrectly states that both the displacement and the distance traveled are 1,000 miles. Choice C is incorrect as it states that both the displacement and the distance traveled are 0 miles, which is not the case.
3. What is the SI unit for quantifying the transfer of energy due to an applied force?
- A. Newton (N)
- B. Meter per second (m/s)
- C. Joule (J)
- D. Kilogram (kg)
Correct answer: C
Rationale: The correct answer is C: Joule (J). The joule is the SI unit used to quantify the transfer of energy due to an applied force. It is defined as the work done when a force of one newton is applied over a distance of one meter. Newton (N) is the unit of force, not energy transfer. Meter per second (m/s) is the unit of speed, not energy transfer. Kilogram (kg) is the unit of mass, not energy transfer. Therefore, the correct unit for quantifying the transfer of energy due to an applied force is the joule (J).
4. A wave in a rope travels at 12 m/s and has a wavelength of 2 m. What is the frequency?
- A. 38.4 Hz
- B. 6 Hz
- C. 4.6 Hz
- D. 3.75 Hz
Correct answer: B
Rationale: The frequency of a wave is calculated using the formula: frequency = speed / wavelength. In this case, the speed of the wave is 12 m/s and the wavelength is 2 m. Therefore, the frequency is calculated as 12 m/s / 2 m = 6 Hz. Choice A (38.4 Hz), Choice C (4.6 Hz), and Choice D (3.75 Hz) are incorrect as they do not result from the correct calculation using the given values.
5. The operating principle of a metal detector relies on:
- A. The static presence of a permanent magnet
- B. The electromotive force induced by a changing magnetic field
- C. The high electrical conductivity of most metals
- D. The unique thermal signature of metallic objects
Correct answer: B
Rationale: The correct answer is B. Metal detectors work based on the principle of electromotive force induced by a changing magnetic field. When a metal object comes into contact with the detector's magnetic field, it disrupts the field, inducing a current in the metal that can be detected. This principle allows metal detectors to identify the presence of metallic objects without relying on the static presence of a permanent magnet, the high electrical conductivity of metals, or the thermal signature of the objects. Choice A is incorrect because metal detectors do not rely on a static magnet but on the interaction of metals with a changing magnetic field. Choice C is incorrect because while metals do have high electrical conductivity, this is not the principle underlying metal detectors. Choice D is incorrect because metal detectors do not operate based on the thermal signature of objects, but rather on their interaction with magnetic fields.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access