an object with a charge of 3 c is placed 30 cm from another object with a charge of 2 c what is the magnitude of the resulting force between the objec
Logo

Nursing Elites

HESI A2

HESI A2 Physics Practice Test

1. An object with a charge of 3 μC is placed 30 cm from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?

Correct answer: B

Rationale: To find the magnitude of the resulting force between two charges, we use Coulomb's Law: F = k × (|q1 × q2|) / r² Where: F is the force k is Coulomb’s constant (8.99 × 10⁹ N·m²/C²) q1 and q2 are the charges r is the distance between the charges Plugging in the values: F = (8.99 × 10⁹) × (3 × 10⁻⁶) × (2 × 10⁻⁶) / (0.3)² = 0.18 N. Therefore, the magnitude of the resulting force is 0.18 N.

2. Two objects attract each other with a gravitational force of 12 units. If the distance between them is halved, what is the new force of attraction between the two objects?

Correct answer: C

Rationale: The gravitational force between two objects is inversely proportional to the square of the distance between them. When the distance is halved, the new force of attraction will be 12 units x (1/(0.5)^2) = 12 units x 4 = 24 units. Therefore, the correct answer is C. Choice A and B are incorrect as they do not consider the inverse square law of gravitational force. Choice D is incorrect as reducing the distance between the objects does not lead to a squared increase in force.

3. A 0-kg block on a table is given a push so that it slides along the table. If the block is accelerated at 6 m/s2, what was the force applied to the block?

Correct answer: A

Rationale: According to Newton's second law of motion, F=ma. Since the block has a mass of 0 kg, the force applied must be 0 N, as no force is needed to move an object with zero mass.

4. Which characteristic does a transverse wave not have?

Correct answer: A

Rationale: A transverse wave does not have a compression because transverse waves move perpendicular to the direction of the oscillation. In a transverse wave, the particles move up and down, causing crests and troughs, without creating compressions. Compressions are characteristic of longitudinal waves where the particles move parallel to the direction of the wave. The other choices (B, C, and D) are characteristics that transverse waves possess: amplitude is the maximum displacement of a wave from its equilibrium position, frequency is the number of complete oscillations a wave makes in a given time, and wavelength is the distance between two consecutive points in a wave that are in the same phase.

5. Diamagnetism refers to a material's weak:

Correct answer: B

Rationale: Diamagnetism refers to a material's weak repulsion to magnetic fields. When diamagnetic materials are placed in an external magnetic field, they create an opposing magnetic field, leading to repulsion. This is why choice B, 'Repulsion to magnetic fields,' is the correct answer. Choices A, C, and D are incorrect because diamagnetic materials do not exhibit attraction, amplification, or indifference to magnetic fields.

Similar Questions

Psychrometrics is a branch of thermodynamics that deals with the properties of:
Longitudinal waves have vibrations that move ___________.
If a 5-kg ball is moving at 5 m/s, what is its momentum?
In fluid dynamics, the continuity equation, a fundamental principle, expresses the conservation of:
A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses