HESI A2
HESI Exams Quizlet Physics
1. When a junked car is compacted, which statement is true?
- A. Its mass increases.
- B. Its mass decreases.
- C. Its density increases.
- D. Its density decreases.
Correct answer: C
Rationale: When a junked car is compacted, its volume decreases while its mass remains the same. As a result, the car's density increases because density is mass divided by volume. Choice A is incorrect because the mass of the car remains the same. Choice B is incorrect because the mass does not decrease. Choice D is incorrect because the density increases as the volume decreases, not decreases.
2. Which of these substances is most compressible?
- A. Gold
- B. Water
- C. Mercury
- D. Methane
Correct answer: D
Rationale: Methane, a gas at room temperature and pressure, is the most compressible substance among the options provided. Gases are generally more compressible compared to liquids and solids because their particles have more space between them, allowing for greater compression when pressure is applied. Gold, water, and mercury, being solid and liquid substances, respectively, have particles arranged closely together, making them less compressible. Therefore, the correct answer is Methane.
3. When calculating an object’s acceleration, what must you do?
- A. Divide the change in time by the velocity.
- B. Multiply the velocity by the time.
- C. Find the difference between the time and velocity.
- D. Divide the change in velocity by the change in time.
Correct answer: D
Rationale: When calculating an object's acceleration, you must divide the change in velocity by the change in time. Acceleration is defined as the rate of change of velocity with respect to time. By determining the ratio of the change in velocity to the change in time, you can ascertain how quickly the velocity of an object is changing, thereby finding its acceleration. Choice A is incorrect because acceleration is not calculated by dividing time by velocity. Choice B is incorrect as it describes multiplying velocity by time, which does not yield acceleration. Choice C is incorrect as finding the difference between time and velocity is not a method to calculate acceleration.
4. According to the Clausius inequality, for a cyclic process involving heat transfer between a system and its surroundings at a single constant temperature (T), the following inequality must hold true:
- A. There is no relationship between heat transfer and temperature in a cyclic process.
- B. ∫ dQ/T ≥ 0
- C. ∫ Q/T = constant
- D. ∫ dQ/T ≤ 0
Correct answer: D
Rationale: The Clausius inequality states that for a cyclic process involving heat transfer at a single constant temperature, the integral of heat transfer divided by temperature (∫ dQ/T) must be less than or equal to zero. This inequality reflects the irreversibility of natural processes. Choice A is incorrect as there is a direct relationship between heat transfer and temperature in the Clausius inequality. Choice B is incorrect because the integral of dQ/T must be less than or equal to zero, not greater than or equal to zero. Choice C is incorrect because the integral of Q/T is not a constant in a cyclic process involving heat transfer at a single constant temperature.
5. An object with a charge of 3 μC is placed 30 cm from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?
- A. 0.6 N
- B. 0.18 N
- C. 180 N
- D. 9 × 10−12 N
Correct answer: B
Rationale: To find the magnitude of the resulting force between two charges, we use Coulomb's Law: F = k × (|q1 × q2|) / r² Where: F is the force k is Coulomb’s constant (8.99 × 10⁹ N·m²/C²) q1 and q2 are the charges r is the distance between the charges Plugging in the values: F = (8.99 × 10⁹) × (3 × 10⁻⁶) × (2 × 10⁻⁶) / (0.3)² = 0.18 N. Therefore, the magnitude of the resulting force is 0.18 N.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access