HESI A2
HESI Exams Quizlet Physics
1. For the core of an electromagnet, a material with high:
- A. Resistivity is ideal
- B. Permeability is preferred
- C. Permittivity is crucial
- D. Dielectric strength is essential
Correct answer: B
Rationale: A material with high permeability is preferred for the core of an electromagnet because it allows magnetic field lines to pass through it easily, enhancing the strength of the magnetic field generated. Choice A is incorrect because high resistivity would impede the flow of current in the coil, reducing the strength of the magnetic field. Choice C is incorrect as permittivity is related to electric fields, not magnetic fields. Choice D is also incorrect because dielectric strength is about insulating materials against breakdown under an electric field, not relevant to enhancing magnetic fields.
2. Longitudinal waves have vibrations that move ___________.
- A. at right angles to the direction of the vibrations
- B. in the direction opposite to that of the wave
- C. in the same direction as the wave
- D. in waves and troughs
Correct answer: C
Rationale: In longitudinal waves, the vibrations of particles occur in the same direction as the wave propagates. This means the particles move back and forth in the direction of the wave, creating compressions and rarefactions along the wave. Therefore, the correct choice is C, in the same direction as the wave. Choice A is incorrect because transverse waves, not longitudinal waves, have vibrations at right angles to the direction of wave propagation. Choice B is incorrect as it describes the motion in transverse waves. Choice D is incorrect as it is an inaccurate representation of how longitudinal waves propagate.
3. For steady, incompressible flow through a pipe, the mass flow rate (ṁ) is related to the fluid density (ρ), cross-sectional area (A), and average velocity (v) via the continuity equation:
- A. ṁ cannot be determined without additional information
- B. ṁ = ρvA
- C. Bernoulli's principle is solely applicable here
- D. The equation of state for the specific fluid is required
Correct answer: B
Rationale: The continuity equation for steady, incompressible flow states that the mass flow rate is the product of the fluid's density, velocity, and cross-sectional area. Hence, ṁ = ρvA. Choice A is incorrect because the mass flow rate can be determined using the given formula. Choice C is incorrect as Bernoulli's principle does not directly relate to the mass flow rate calculation. Choice D is incorrect as the equation of state is not needed to calculate the mass flow rate in this scenario.
4. In fluid machinery, pumps are designed to primarily increase the fluid's:
- A. Pressure
- B. Velocity only
- C. Both pressure and velocity
- D. Neither pressure nor velocity
Correct answer: A
Rationale: Pumps in fluid machinery are designed to primarily increase the fluid's pressure. This increase in pressure allows the fluid to flow through the system efficiently and overcome resistance. While pumps can also impact the velocity of the fluid to some extent, their main function is to elevate the pressure to facilitate the movement of the fluid within the system. Choice B is incorrect because pumps do not focus solely on increasing velocity. Choice C is incorrect as while pumps can affect velocity, their primary purpose is to boost pressure. Choice D is incorrect as pumps aim to increase either the pressure, velocity, or both.
5. If a 5-kg ball is moving at 5 m/s, what is its momentum?
- A. 10 kg⋅m/s
- B. 16.2 km/h
- C. 24.75 kg⋅m/s
- D. 25 kg⋅m/s
Correct answer: D
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. In this case, the mass of the ball is 5 kg and its velocity is 5 m/s. Therefore, the momentum of the ball is 5 kg × 5 m/s = 25 kg⋅m/s. Choice A (10 kg⋅m/s) is incorrect as it does not account for both mass and velocity. Choice B (16.2 km/h) is incorrect as it provides a speed in a different unit without considering mass. Choice C (24.75 kg⋅m/s) is incorrect as it does not correctly calculate the momentum based on the given mass and velocity.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access