a key parameter in fluid selection is specific gravity sg for a submerged object in a reference fluid often water sg object reference an object with
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. A key parameter in fluid selection is specific gravity (SG). For a submerged object in a reference fluid (often water), SG = ρ_object / ρ_reference. An object with SG > 1 will:

Correct answer: A

Rationale: When the specific gravity (SG) of an object is greater than 1, it indicates that the object is denser than the reference fluid, which is often water. According to Archimedes' principle, an object with SG > 1 will experience a net buoyant force acting upwards when submerged in the fluid. This is because the buoyant force is greater than the weight of the object, causing it to float. Therefore, the correct answer is A: 'Experience a net buoyant force acting upwards.' Objects with SG < 1 would sink as they are less dense than the fluid, while objects with SG = 1 would be neutrally buoyant, neither sinking nor floating.

2. A rock has a volume of 6 cm3 and a mass of 24 g. What is its density?

Correct answer: A

Rationale: Density is calculated by dividing the mass of an object by its volume. In this case, the mass of the rock is 24 g and its volume is 6 cm3. By dividing 24 g by 6 cm3, we find that the density of the rock is 4 g/cm3. Choice A is the correct answer because density is expressed in units of mass per unit volume (g/cm3). Choice B is incorrect as it represents the reciprocal of density. Choices C and D are significantly higher values and do not match the calculated density of the rock.

3. In the mechanical power equation P = E / t, power is measured in ___________.

Correct answer: D

Rationale: In the mechanical power equation P = E / t, power is measured in watts. Watts are the standard unit of power in the International System of Units (SI), named after the Scottish engineer James Watt. Watts are defined as joules per second, reflecting the rate at which energy is transferred or converted. Ohms (choice A) are the unit of electrical resistance, Joules (choice B) are the unit of energy, and volts (choice C) are the unit of electric potential difference. Therefore, the correct answer is watts as it directly relates to power in the given equation.

4. Which vehicle has the greatest momentum?

Correct answer: D

Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m × v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg × 3 m/s = 27,000 kg·m/s B: 2,000 kg × 24 m/s = 48,000 kg·m/s C: 1,500 kg × 29 m/s = 43,500 kg·m/s D: 500 kg × 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.

5. As a vehicle positioned at the peak of a hill rolls downhill, its potential energy transforms into:

Correct answer: D

Rationale: The correct answer is D: Kinetic energy. Potential energy is converted into kinetic energy as the vehicle moves downhill. Kinetic energy is the energy possessed by a moving object. Thermal energy is not produced in this scenario because the energy transformation is mainly from potential to kinetic energy, not involving heat generation. Choices A, B, and C are incorrect because the primary energy transformation in this scenario is from potential to kinetic energy, not involving thermal energy.

Similar Questions

An object with a charge of 4 μC is placed 50 cm from another object with a charge twice as great. What is the magnitude of the resulting repulsive force?
According to the zeroth law of thermodynamics, two systems are in thermal equilibrium if:
What does Coulomb’s law relate to?
How do you determine the velocity of a wave?
When calculating an object’s acceleration, what must you do?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses