fluids can be categorized based on their shear stress strain rate relationship an ideal fluid exhibits
Logo

Nursing Elites

HESI A2

HESI A2 Physics Practice Test

1. Fluids can be categorized based on their shear stress-strain rate relationship. An ideal fluid exhibits:

Correct answer: A

Rationale: An ideal fluid, often referred to as an inviscid fluid, is a theoretical concept used in fluid mechanics to simplify calculations. It is characterized by having zero shear stress at any strain rate. In reality, such fluids do not exist, but they serve as a useful starting point for understanding fluid behavior in idealized situations. Choice B is incorrect because a linear relationship between shear stress and strain rate defines a Newtonian fluid, not an ideal fluid. Choice C is incorrect because a non-linear relationship between shear stress and strain rate characterizes Non-Newtonian fluids, not ideal fluids. Choice D is incorrect because the high dependence of viscosity on temperature is a characteristic seen in real fluids and does not define an ideal fluid.

2. For the core of an electromagnet, a material with high:

Correct answer: B

Rationale: A material with high permeability is preferred for the core of an electromagnet because it allows magnetic field lines to pass through it easily, enhancing the strength of the magnetic field generated. Choice A is incorrect because high resistivity would impede the flow of current in the coil, reducing the strength of the magnetic field. Choice C is incorrect as permittivity is related to electric fields, not magnetic fields. Choice D is also incorrect because dielectric strength is about insulating materials against breakdown under an electric field, not relevant to enhancing magnetic fields.

3. When a crane hoists a massive object at a constant velocity compared to lifting the same object gradually, the work done by the crane is:

Correct answer: C

Rationale: The work done by the crane is identical in both scenarios. Work is defined as the force applied over a distance. Since the force needed to lift the object is equal to its weight and the displacement is the same, the work done is identical, whether the object is lifted gradually or at a constant velocity. Choice A is incorrect because the work done is the same in both cases. Choice B is incorrect as well since the work done does not increase. Choice D is incorrect as the mass of the object does not affect the work done by the crane in this scenario.

4. An object has a constant velocity of 50 m/s and travels for 10 s. What is the acceleration of the object?

Correct answer: A

Rationale: The acceleration of an object is defined as the rate of change of its velocity. When an object has a constant velocity, it means there is no change in its speed or direction. In this case, the object maintains a constant velocity of 50 m/s for 10 seconds, which implies that there is no change in velocity. Therefore, the acceleration of the object is 0 m/s² as there is no acceleration or deceleration happening. Choices B, C, and D are incorrect because acceleration is the change in velocity over time, and in this scenario of constant velocity, the acceleration is 0 m/s².

5. An incandescent lamp consumes 60 Joules of energy per second. What is the power rating of this lamp?

Correct answer: B

Rationale: Power is defined as energy consumed per unit time. If the lamp consumes 60 Joules of energy per second, the power rating is 60 Watts. Therefore, choice B is correct. Choice A ('1 Watt') is incorrect because the lamp consumes 60 Joules per second, not 1 Joule per second. Choice C ('1/60 Joules') is incorrect as it does not represent the power rating. Choice D ('Impossible to determine without knowing the voltage') is incorrect because power can be calculated using energy consumption per unit time without needing to know the voltage.

Similar Questions

When calculating an object’s acceleration, what must you do?
An object with a charge of 3 μC is placed 30 cm from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?
A hummingbird’s wings beat at 25 beats per second. What is the period of the wing beating in seconds?
The efficiency (η) of a heat engine is defined as the ratio of the net work done (Wnet) by the engine to the heat input (Qh) from the hot reservoir. The relationship is expressed as:
When a fluid encounters a bluff body (e.g., a car), the flow can separate behind the object, creating a region of low pressure. This phenomenon is known as:

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses