HESI A2
HESI A2 Physics
1. A wave in a rope travels at 12 m/s and has a wavelength of 2 m. What is the frequency?
- A. 38.4 Hz
- B. 6 Hz
- C. 4.6 Hz
- D. 3.75 Hz
Correct answer: B
Rationale: The frequency of a wave is calculated using the formula: frequency = speed / wavelength. In this case, the speed of the wave is 12 m/s and the wavelength is 2 m. Therefore, the frequency is calculated as 12 m/s / 2 m = 6 Hz. Choice A (38.4 Hz), Choice C (4.6 Hz), and Choice D (3.75 Hz) are incorrect as they do not result from the correct calculation using the given values.
2. What is the diameter of a loop if its radius is 6 meters?
- A. 6 m
- B. 12 m
- C. 18 m
- D. 36 m
Correct answer: B
Rationale: The diameter of a loop is calculated by multiplying the radius by 2. Since the radius is 6 meters, the diameter is 6 × 2 = 12 meters. Therefore, the correct answer is 12 meters. Choice A (6 m) is the radius, not the diameter. Choices C (18 m) and D (36 m) are incorrect as they do not reflect the correct calculation for determining the diameter of a loop.
3. What is the net force acting on the car?
- A. 450 N
- B. 700 N
- C. 1,500 N
- D. 6,300 N
Correct answer: C
Rationale: To determine the net force acting on an object, we need to consider the sum of the forces acting in the same direction and subtract the forces acting in the opposite direction. In this scenario, there is a force of 4,200 N to the right and a force of 2,700 N to the left. By subtracting the leftward force from the rightward force (4,200 N - 2,700 N), we find that the net force acting on the car is 1,500 N to the right. Therefore, choice C, 1,500 N, is the correct answer. Choice A, 450 N, is too small as it does not account for the total forces involved. Choice B, 700 N, is also incorrect as it is not the result of the correct mathematical operation on the given forces. Choice D, 6,300 N, is too large and does not align with the calculation based on the forces provided.
4. Two balloons with charges of 5 μC each are placed 25 cm apart. What is the magnitude of the resulting repulsive force between them?
- A. 0.18 N
- B. 1.8 N
- C. 10−3 N
- D. 5 × 10−3 N
Correct answer: B
Rationale: To find the repulsive force between the two charges, we use Coulomb's law: F = k(q1 * q2) / r^2. Here, k is the Coulomb constant (8.99 x 10^9 Nm^2/C^2), q1 and q2 are the charges (5 μC each), and r is the distance between the charges (25 cm = 0.25 m). Substituting these values into the formula: F = (8.99 x 10^9 Nm^2/C^2)(5 x 10^-6 C)(5 x 10^-6 C) / (0.25 m)^2. Calculating this gives F = 1.8 N. Therefore, the magnitude of the resulting repulsive force between the two balloons is 1.8 N. Choice A, C, and D are incorrect as they do not correctly calculate the force using Coulomb's law.
5. Ocean waves build during a storm until there is a vertical distance from the high point to the low point of 6 meters and a horizontal distance of 9 meters between adjacent crests. The waves hit the shore every 5 seconds. What is the speed of the waves?
- A. 1.2 m/s
- B. 1.8 m/s
- C. 2.0 m/s
- D. 2.4 m/s
Correct answer: B
Rationale: To find the speed of the waves, we use the formula: speed = wavelength / period. The wavelength is the horizontal distance between adjacent crests, which is 9 meters in this case. The period is the time it takes for one wave to pass a fixed point, given as 5 seconds. Therefore, speed = 9 meters / 5 seconds = 1.8 m/s. Choice A (1.2 m/s) is incorrect because it miscalculates the speed. Choice C (2.0 m/s) and Choice D (2.4 m/s) are incorrect as they do not correctly calculate the speed using the provided data.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access