a wave in a rope travels at 12 ms and has a wavelength of 2 m what is the frequency
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. A wave in a rope travels at 12 m/s and has a wavelength of 2 m. What is the frequency?

Correct answer: B

Rationale: The frequency of a wave is calculated using the formula: frequency = speed / wavelength. In this case, the speed of the wave is 12 m/s and the wavelength is 2 m. Therefore, the frequency is calculated as 12 m/s / 2 m = 6 Hz. Choice A (38.4 Hz), Choice C (4.6 Hz), and Choice D (3.75 Hz) are incorrect as they do not result from the correct calculation using the given values.

2. In an adiabatic process, there is:

Correct answer: A

Rationale: In an adiabatic process, choice A is correct because adiabatic processes involve no heat transfer between the system and its surroundings (Q = 0). This lack of heat transfer is a defining characteristic of adiabatic processes. Choices B, C, and D do not accurately describe an adiabatic process. Choice B refers to an isothermal process where temperature remains constant, not adiabatic. Choice C describes an isobaric process with constant pressure, not specific to adiabatic processes. Choice D mentions the conservation of energy but does not directly relate to the absence of heat transfer in adiabatic processes.

3. A Carnot cycle is a theoretical ideal heat engine operating between two heat reservoirs at different temperatures. Which of the following statements is NOT true about a Carnot cycle?

Correct answer: C

Rationale: The statement that is NOT true is C. Although part of the Carnot cycle operates isothermally, not the entire cycle operates isothermally. The Carnot cycle consists of both isothermal and adiabatic processes. Choice A is incorrect because the efficiency of a Carnot cycle is indeed solely dependent on the absolute temperatures of the hot and cold reservoirs. Choice B is correct as a Carnot cycle is reversible, allowing the process to be run in both directions with the same efficiency. Choice D is also true as the Carnot cycle is the most efficient heat engine operating between the same two reservoir temperatures. Therefore, the correct answer is C.

4. Entropy (S) is a thermodynamic property related to the system's disorder. According to the second law of thermodynamics, in a spontaneous process:

Correct answer: A

Rationale: The second law of thermodynamics asserts that the entropy of an isolated system (or the combined system and surroundings) will always increase in a spontaneous process, reflecting an increase in disorder. Therefore, the correct answer is that the total entropy of the system and surroundings increases. Choice B is incorrect because entropy always tends to increase in a spontaneous process, as dictated by the second law of thermodynamics. Choice C is incorrect as entropy typically increases in natural processes. Choice D is incorrect because the second law of thermodynamics states that the total entropy of the system and surroundings always increases in a spontaneous process.

5. The operating principle of a metal detector relies on:

Correct answer: B

Rationale: The correct answer is B. Metal detectors work based on the principle of electromotive force induced by a changing magnetic field. When a metal object comes into contact with the detector's magnetic field, it disrupts the field, inducing a current in the metal that can be detected. This principle allows metal detectors to identify the presence of metallic objects without relying on the static presence of a permanent magnet, the high electrical conductivity of metals, or the thermal signature of the objects. Choice A is incorrect because metal detectors do not rely on a static magnet but on the interaction of metals with a changing magnetic field. Choice C is incorrect because while metals do have high electrical conductivity, this is not the principle underlying metal detectors. Choice D is incorrect because metal detectors do not operate based on the thermal signature of objects, but rather on their interaction with magnetic fields.

Similar Questions

A system undergoes an isobaric process (constant pressure). In this process, the work done (W) by the system is:
Capillarity describes the tendency of fluids to rise or fall in narrow tubes. This phenomenon arises from the interplay of:
Why does potential energy increase as particles approach each other?
How do you determine the velocity of a wave?
When the heat of a reaction is negative, which statement is true?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses