what is the diameter of the loop
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. What is the diameter of a loop if its radius is 6 meters?

Correct answer: B

Rationale: The diameter of a loop is calculated by multiplying the radius by 2. Since the radius is 6 meters, the diameter is 6 × 2 = 12 meters. Therefore, the correct answer is 12 meters. Choice A (6 m) is the radius, not the diameter. Choices C (18 m) and D (36 m) are incorrect as they do not reflect the correct calculation for determining the diameter of a loop.

2. For the core of an electromagnet, a material with high:

Correct answer: B

Rationale: A material with high permeability is preferred for the core of an electromagnet because it allows magnetic field lines to pass through it easily, enhancing the strength of the magnetic field generated. Choice A is incorrect because high resistivity would impede the flow of current in the coil, reducing the strength of the magnetic field. Choice C is incorrect as permittivity is related to electric fields, not magnetic fields. Choice D is also incorrect because dielectric strength is about insulating materials against breakdown under an electric field, not relevant to enhancing magnetic fields.

3. The triple point of a substance is the specific temperature and pressure at which all three phases (solid, liquid, and gas) can coexist in thermodynamic equilibrium. Which of the following statements about the triple point is true?

Correct answer: B

Rationale: The triple point is a unique temperature and pressure where all three phases (solid, liquid, and gas) of a pure substance can coexist in equilibrium. It is a constant for each substance and independent of container size. Choice A is incorrect because the triple point is a fixed point regardless of the container size. Choice C is incorrect as the pressure at the triple point is specific for each substance and will not be zero unless the substance has unique properties. Choice D is incorrect since the temperature at the triple point is precisely defined and cannot be above the boiling point of the liquid phase.

4. A pitcher throws a 45-g baseball at a velocity of 42 meters per second. What is the ball’s momentum?

Correct answer: B

Rationale: Momentum is calculated by multiplying mass (in kg) by velocity (in m/s). The mass of the baseball is 0.045 kg (45 grams converted to kg), and the velocity is 42 m/s. Momentum = 0.045 kg × 42 m/s = 1.89 kg⋅m/s. Therefore, the correct answer is 1.89 kg⋅m/s. Choice A is incorrect as it incorrectly converts the mass from grams to kg. Choice C and D are incorrect due to calculation errors.

5. In a circuit with three same-size resistors wired in series to a 9-V power supply, producing 1 amp of current, what is the resistance of each resistor?

Correct answer: C

Rationale: In a series circuit, the total resistance is the sum of the individual resistances. With a total voltage of 9 V and a current of 1 A, we can use Ohm's Law (V = I × R) to find the total resistance: Total resistance = 9 V / 1 A = 9 ohms. Since the resistors are identical and wired in series, the total resistance is evenly divided among the three resistors: Resistance of each resistor = 9 ohms / 3 = 3 ohms. Thus, the resistance of each resistor is 3 ohms. Therefore, the correct answer is 3 ohms. Choice A, 9 ohms, is incorrect because this would be the total resistance of all three resistors combined in series. Choice B, 6 ohms, is incorrect as it does not account for the equal distribution of resistance in a series circuit. Choice D, 1 ohm, is incorrect as it is too low for resistors in series with a total resistance of 9 ohms.

Similar Questions

When a dielectric material is inserted between the plates of a charged capacitor, what will happen to the capacitance?
A 3-volt flashlight uses a bulb with 60-ohm resistance. What current flows through the flashlight?
A 2,000-kg car travels at 15 m/s. For a 1,500-kg car traveling at 15 m/s to generate the same momentum, what would need to happen?
Longitudinal waves have vibrations that move ___________.
Fluids can be categorized based on their shear stress-strain rate relationship. An ideal fluid exhibits:

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses