in open channel flow a critical property is the free surface which refers to the
Logo

Nursing Elites

HESI A2

HESI A2 Physics Practice Test

1. In open-channel flow, a critical property is the free surface, which refers to the:

Correct answer: B

Rationale: The free surface in open-channel flow refers to the interface between the liquid and the surrounding gas, typically the atmosphere. This interface is critical as it determines the boundary between the liquid flow and the open environment. Option A is incorrect as it refers to the liquid-container wall interface, not the free surface. Option C is incorrect because it represents the bottom of the channel, not the free surface. Option D is incorrect as it describes the region of highest velocity within the liquid, not the free surface. Therefore, the correct choice is B.

2. A 1,000-kg car drives at 10 m/s around a circle with a radius of 50 m. What is the centripetal acceleration of the car?

Correct answer: A

Rationale: Centripetal acceleration is calculated using the formula a = v² / r, where v = 10 m/s and r = 50 m. Substituting these values: a = (10 m/s)² / 50 m = 100 / 50 = 2 m/s². Therefore, the correct answer is 2 m/s². Choice B, 4 m/s², is incorrect because it is not the result of the correct calculation. Choice C, 5 m/s², is incorrect as it does not match the calculated centripetal acceleration. Choice D, 10 m/s², is incorrect as it does not reflect the correct calculation based on the given values.

3. Faraday's law of electromagnetic induction states that a changing magnetic field in a conductor induces a/an:

Correct answer: B

Rationale: Faraday's law of electromagnetic induction states that a changing magnetic field induces an electromotive force in a conductor. This electromotive force is responsible for generating electricity in power plants and various electrical devices. The induced current is a result of the changing magnetic field, not an increase in resistance (choice A), static electric charge (choice C), or a decrease in capacitance (choice D). Hence, the correct answer is B.

4. During an isothermal (constant temperature) expansion, what is the work done by the gas on the surroundings?

Correct answer: D

Rationale: In an isothermal expansion, the temperature remains constant, meaning there is no change in internal energy. However, the gas still does work on the surroundings as it expands, and this work is positive. Since internal energy does not change, the correct answer is D, 'Positive and greater than the change in internal energy.' Choice A is incorrect because the work done is not equal to the change in internal energy. Choice B is incorrect as work is done during the expansion. Choice C is incorrect since the work done is not negative during an isothermal expansion.

5. When a fluid flows past a solid object, a thin layer of fluid adheres to the object's surface due to:

Correct answer: C

Rationale: The boundary layer effect occurs when a thin layer of fluid near the surface of a solid adheres to it due to viscosity. This layer experiences a velocity gradient as the fluid farther from the surface moves faster, while the fluid closest to the surface is nearly stationary.

Similar Questions

A 780-watt refrigerator is powered by a 120-volt power source. What is the current being drawn?
A plucked guitar string makes 80 vibrations in one second. What is the period?
For steady, incompressible flow through a pipe, the mass flow rate (ṁ) is related to the fluid density (ρ), cross-sectional area (A), and average velocity (v) via the continuity equation:
A Carnot cycle is a theoretical ideal heat engine operating between two heat reservoirs at different temperatures. Which of the following statements is NOT true about a Carnot cycle?
A car, starting from rest, accelerates at 10 m/s² for 5 seconds. What is the velocity of the car after 5 seconds?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses