HESI A2
HESI Exams Quizlet Physics
1. Why does potential energy increase as particles approach each other?
- A. Attractive forces increase.
- B. Attractive forces decrease.
- C. Repulsive forces increase.
- D. Repulsive forces decrease.
Correct answer: C
Rationale: The correct answer is C: Repulsive forces increase. As particles approach each other, the distance between them decreases, causing the repulsive forces between the particles to increase. This increase in repulsive forces leads to an increase in potential energy as the particles resist being pushed closer together. Choices A and B are incorrect because attractive forces do not increase or decrease in this scenario. Choice D is incorrect because repulsive forces actually increase as particles get closer, leading to a rise in potential energy.
2. Which of these objects has the greatest momentum?
- A. A 1,250-kg car moving at 5 m/s
- B. An 80-kg person running at 4 m/s
- C. A 10-kg piece of meteorite moving at 600 m/s
- D. A o.5-kg rock moving at 40 m/s
Correct answer: A
Rationale: Momentum is the product of mass and velocity. The car has the highest momentum because it has the largest mass and a significant velocity.
3. A plucked guitar string makes 80 vibrations in one second. What is the period?
- A. 0.0125 s
- B. 0.025 s
- C. 0.125 s
- D. 0.25 s
Correct answer: B
Rationale: The period is the time taken for one complete vibration of the guitar string. To find the period, you need to take the reciprocal of the frequency. Since the string makes 80 vibrations in one second, the period is 1/80 = 0.0125 seconds (or 0.025 s). Choice A is incorrect because it is the reciprocal of 80. Choice C is incorrect as it is 10 times the reciprocal of 80. Choice D is incorrect as it is 100 times the reciprocal of 80.
4. A 50-kg box of iron fishing weights is balanced at the edge of a table. Peter gives it a push, and it falls 2 meters to the floor. Which of the following statements is true?
- A. Once the box hits the floor, it loses both its kinetic and potential energy.
- B. The box had kinetic energy only when it was balanced at the edge of the table.
- C. The box had both kinetic and potential energy after it fell.
- D. Once the box hits the floor, it loses all its kinetic energy.
Correct answer: C
Rationale: When the box is balanced at the edge of the table, it has potential energy due to its position above the ground. As Peter gives it a push, and it falls 2 meters to the floor, the box then has both kinetic energy (due to its motion) and potential energy (due to gravity). Therefore, the correct statement is that the box had both kinetic and potential energy after it fell. Option A is incorrect because the box retains its energy forms even after hitting the floor. Option B is incorrect as the box has kinetic energy both before and after falling. Option D is incorrect as the box still possesses kinetic energy even after hitting the floor.
5. An object with a charge of 4 μC is placed 1 meter from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?
- A. 0.04 N
- B. 0.072 N
- C. 80 N
- D. 8 × 10−6 N
Correct answer: A
Rationale: To find the magnitude of the resulting force between two charges, we can use Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. The formula for Coulomb's law is: F = k × (|q1 × q2| / r²), where F is the force, k is the Coulomb constant, q1 and q2 are the charges, and r is the distance between the charges. Substituting the given values into the formula: F = (9 × 10⁹ N·m²/C²) × ((4 × 10⁻⁶ C) × (2 × 10⁻⁶ C) / (1 m)²) = 0.04 N. Therefore, the magnitude of the resulting force between the objects is 0.04 N.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access