HESI A2
HESI A2 Physics Quizlet
1. The first law of thermodynamics is a principle of energy conservation. It states that:
- A. Energy can be created or destroyed.
- B. The total entropy of an isolated system always decreases.
- C. Energy can neither be created nor destroyed, only transferred or transformed.
- D. The temperature of a system is directly proportional to its entropy.
Correct answer: C
Rationale: The first law of thermodynamics states that energy cannot be created or destroyed; it can only be transferred or converted from one form to another, ensuring energy conservation in any system. Choice A is incorrect because it goes against the principle of energy conservation. Choice B is incorrect as it refers to the second law of thermodynamics, which states that the total entropy of an isolated system always increases. Choice D is incorrect because the temperature of a system is not directly proportional to its entropy.
2. As the frequency of a sound wave increases, what else is true?
- A. Its wavelength decreases.
- B. Its wavelength increases.
- C. Its amplitude decreases.
- D. Its amplitude increases.
Correct answer: A
Rationale: The correct answer is A: 'Its wavelength decreases.' The frequency and wavelength of a sound wave are inversely proportional. As the frequency of a sound wave increases (more oscillations per second), its wavelength decreases. This relationship is described by the formula: Speed of Sound = Frequency x Wavelength. Therefore, to maintain the speed of sound constant, when the frequency increases, the wavelength must decrease. Choices B, C, and D are incorrect because an increase in frequency does not lead to an increase in wavelength or changes in amplitude.
3. The specific heat capacity of water is about 2 J/g°C. How much energy would you need to heat 1 kilogram of water by 10°C?
- A. 420 J
- B. 4,200 J
- C. 42,000 J
- D. 420,000 J
Correct answer: C
Rationale: The formula to calculate the energy required to heat a substance is Q = m × c × ΔT, where m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Given that 1 kilogram of water is equal to 1,000 grams, the mass (m) is 1,000 g, the specific heat capacity (c) of water is 4.2 J/g°C (not 2 J/g°C), and the change in temperature (ΔT) is 10°C. Substituting these values into the formula: Q = 1,000 × 4.2 × 10 = 42,000 J. Therefore, the correct energy required to heat 1 kilogram of water by 10°C is 42,000 J. Choices A, B, and D are incorrect as they do not consider the correct specific heat capacity of water or the conversion of mass to grams.
4. For steady, incompressible flow through a pipe, the mass flow rate (ṁ) is related to the fluid density (ρ), cross-sectional area (A), and average velocity (v) via the continuity equation:
- A. ṁ cannot be determined without additional information
- B. ṁ = ρvA
- C. Bernoulli's principle is solely applicable here
- D. The equation of state for the specific fluid is required
Correct answer: B
Rationale: The continuity equation for steady, incompressible flow states that the mass flow rate is the product of the fluid's density, velocity, and cross-sectional area. Hence, ṁ = ρvA. Choice A is incorrect because the mass flow rate can be determined using the given formula. Choice C is incorrect as Bernoulli's principle does not directly relate to the mass flow rate calculation. Choice D is incorrect as the equation of state is not needed to calculate the mass flow rate in this scenario.
5. The speed of sound in dry air at 20°C is 343 m/s. If the wavelength of a sound wave is 5 m, what is its frequency?
- A. 171.5 Hz
- B. 79 Hz
- C. 68.6 Hz
- D. 63.6 Hz
Correct answer: C
Rationale: The speed of sound (v) can be calculated using the formula: v = f × λ, where f is the frequency and λ is the wavelength. Given that the speed of sound is 343 m/s and the wavelength is 5 m, we can rearrange the formula to solve for frequency: f = v / λ = 343 / 5 = 68.6 Hz. Therefore, the correct frequency is 68.6 Hz. Choices A, B, and D are incorrect as they do not result from the correct calculation based on the given values.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access