HESI A2
HESI A2 Physics Quizlet
1. The first law of thermodynamics is a principle of energy conservation. It states that:
- A. Energy can be created or destroyed.
- B. The total entropy of an isolated system always decreases.
- C. Energy can neither be created nor destroyed, only transferred or transformed.
- D. The temperature of a system is directly proportional to its entropy.
Correct answer: C
Rationale: The first law of thermodynamics states that energy cannot be created or destroyed; it can only be transferred or converted from one form to another, ensuring energy conservation in any system. Choice A is incorrect because it goes against the principle of energy conservation. Choice B is incorrect as it refers to the second law of thermodynamics, which states that the total entropy of an isolated system always increases. Choice D is incorrect because the temperature of a system is not directly proportional to its entropy.
2. The specific heat capacity (c) of a material is the amount of heat transfer (Q) required to raise the temperature (ΔT) of a unit mass (m) of the material by one degree (typically Celsius). The relationship between these quantities is described by the equation:
- A. Q = cΔT
- B. Q = mcΔT
- C. Q = c / mΔT
- D. Q = ΔT / mc
Correct answer: A
Rationale: The correct equation relating heat transfer (Q), mass (m), specific heat capacity (c), and change in temperature (ΔT) is Q = mcΔT. This equation states that the heat transfer is equal to the product of the mass, specific heat capacity, and temperature change. Therefore, the correct answer is B, as it correctly represents this relationship. Choices C and D do not correctly represent the relationship between these quantities and are therefore incorrect.
3. A pitcher throws a 45-g baseball at a velocity of 42 meters per second. What is the ball’s momentum?
- A. 0.189 kg⋅m/s
- B. 1.89 kg⋅m/s
- C. 1.07 kg⋅m/s
- D. 0.93 kg⋅m/s
Correct answer: B
Rationale: Momentum is calculated by multiplying mass (in kg) by velocity (in m/s). The mass of the baseball is 0.045 kg (45 grams converted to kg), and the velocity is 42 m/s. Momentum = 0.045 kg × 42 m/s = 1.89 kg⋅m/s. Therefore, the correct answer is 1.89 kg⋅m/s. Choice A is incorrect as it incorrectly converts the mass from grams to kg. Choice C and D are incorrect due to calculation errors.
4. If a 5-kg ball is moving at 5 m/s, what is its momentum?
- A. 10 kg⋅m/s
- B. 16.2 km/h
- C. 24.75 kg⋅m/s
- D. 25 kg⋅m/s
Correct answer: D
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. In this case, the mass of the ball is 5 kg and its velocity is 5 m/s. Therefore, the momentum of the ball is 5 kg × 5 m/s = 25 kg⋅m/s. Choice A (10 kg⋅m/s) is incorrect as it does not account for both mass and velocity. Choice B (16.2 km/h) is incorrect as it provides a speed in a different unit without considering mass. Choice C (24.75 kg⋅m/s) is incorrect as it does not correctly calculate the momentum based on the given mass and velocity.
5. As the frequency of a sound wave increases, what else is true?
- A. Its wavelength decreases.
- B. Its wavelength increases.
- C. Its amplitude decreases.
- D. Its amplitude increases.
Correct answer: A
Rationale: The correct answer is A: 'Its wavelength decreases.' The frequency and wavelength of a sound wave are inversely proportional. As the frequency of a sound wave increases (more oscillations per second), its wavelength decreases. This relationship is described by the formula: Speed of Sound = Frequency x Wavelength. Therefore, to maintain the speed of sound constant, when the frequency increases, the wavelength must decrease. Choices B, C, and D are incorrect because an increase in frequency does not lead to an increase in wavelength or changes in amplitude.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access