HESI A2
HESI A2 Physics
1. A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?
- A. 20 cm
- B. 40 cm
- C. 60 cm
- D. 75 cm
Correct answer: C
Rationale: To find the image distance of the candle, we use the mirror formula: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. In this case, the focal length f = 10 cm and the object distance do = 20 cm. Substituting these values into the formula gives us 1/10 = 1/20 + 1/di. Solving for di, we get di = 60 cm. Therefore, the image distance of the candle is 60 cm. Choice A (20 cm) is incorrect because it represents the object distance, not the image distance. Choice B (40 cm) is incorrect as it does not consider the mirror formula calculation. Choice D (75 cm) is incorrect as it does not match the correct calculation based on the mirror formula.
2. In physics, the relationship between acceleration and force is expressed in ___________.
- A. Newton’s first law of motion
- B. Newton’s second law of motion
- C. Newton’s third law of motion
- D. none of Newton’s laws of motion
Correct answer: B
Rationale: The relationship between acceleration and force is expressed in Newton’s second law of motion. This law states that the acceleration of an object is directly proportional to the net force acting on the object and inversely proportional to the object's mass. Mathematically, this relationship is represented as F = ma, where F is the force, m is the mass of the object, and a is the acceleration. Choice A, Newton’s first law of motion, also known as the law of inertia, states that an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an external force. Choice C, Newton’s third law of motion, states that for every action, there is an equal and opposite reaction, focusing on the interaction between two objects. Choice D is incorrect because the relationship between acceleration and force is indeed described by one of Newton’s laws of motion, specifically the second law.
3. Which mathematical quantity is scalar?
- A. Distance
- B. Velocity
- C. Acceleration
- D. Displacement
Correct answer: A
Rationale: Distance is a scalar quantity because it has only magnitude and no direction. It is simply the total length of the path travelled by an object. Scalars are quantities that are fully described by their magnitude alone, without any reference to direction. Velocity and acceleration are vector quantities as they have both magnitude and direction. Displacement is also a vector quantity as it is the change in position of an object and includes both magnitude and direction.
4. When calculating an object’s acceleration, what must you do?
- A. Divide the change in time by the velocity.
- B. Multiply the velocity by the time.
- C. Find the difference between the time and velocity.
- D. Divide the change in velocity by the change in time.
Correct answer: D
Rationale: When calculating an object's acceleration, you must divide the change in velocity by the change in time. Acceleration is defined as the rate of change of velocity with respect to time. By determining the ratio of the change in velocity to the change in time, you can ascertain how quickly the velocity of an object is changing, thereby finding its acceleration. Choice A is incorrect because acceleration is not calculated by dividing time by velocity. Choice B is incorrect as it describes multiplying velocity by time, which does not yield acceleration. Choice C is incorrect as finding the difference between time and velocity is not a method to calculate acceleration.
5. When two long, parallel wires carry currents in the same direction, the wires will experience a force of:
- A. An unpredictable force depending on wire material
- B. Repulsion
- C. No force
- D. Attraction
Correct answer: D
Rationale: When two wires carry current in the same direction, they create magnetic fields that interact with each other. This interaction results in an attractive force between the wires due to the alignment of their magnetic fields. Choice A is incorrect because the force can be predicted based on the direction of the currents and the magnetic fields produced. Choice B is incorrect because when currents flow in the same direction, they do not repel each other. Choice C is incorrect because there is indeed a force present due to the interaction of magnetic fields, resulting in attraction between the wires.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access