HESI A2
HESI A2 Physics
1. Longitudinal waves have vibrations that move ___________.
- A. at right angles to the direction of the vibrations
- B. in the direction opposite to that of the wave
- C. in the same direction as the wave
- D. in waves and troughs
Correct answer: C
Rationale: In longitudinal waves, the vibrations of particles occur in the same direction as the wave propagates. This means the particles move back and forth in the direction of the wave, creating compressions and rarefactions along the wave. Therefore, the correct choice is C, in the same direction as the wave. Choice A is incorrect because transverse waves, not longitudinal waves, have vibrations at right angles to the direction of wave propagation. Choice B is incorrect as it describes the motion in transverse waves. Choice D is incorrect as it is an inaccurate representation of how longitudinal waves propagate.
2. Which substance would be most affected by a change in temperature?
- A. Liquid nitrogen
- B. Salt crystals
- C. Hydrogen gas
- D. Iron filings
Correct answer: C
Rationale: Hydrogen gas would be most affected by a change in temperature because gases have a greater expansion or contraction in volume with changes in temperature compared to liquids or solids. When the temperature of hydrogen gas increases, its molecules gain kinetic energy and move faster, causing the gas to expand and its volume to increase. Conversely, when the temperature decreases, the gas molecules lose kinetic energy and move slower, leading to a decrease in volume. This property makes hydrogen gas highly sensitive to temperature changes compared to liquid nitrogen, salt crystals, or iron filings. Liquid nitrogen, salt crystals, and iron filings are less affected by temperature changes because their particles are closer together and have lower kinetic energy, resulting in minimal volume changes with temperature fluctuations.
3. For a compressible fluid subjected to rapid pressure changes, sound wave propagation becomes important. The speed of sound (c) depends on the fluid's:
- A. Density (ρ) only
- B. Viscosity (μ) only
- C. Density (ρ) and Bulk modulus
- D. Density (ρ) and Surface tension (γ)
Correct answer: C
Rationale: In a compressible fluid, the speed of sound (c) depends on both the fluid's density (ρ) and Bulk modulus. Density affects the compressibility of the fluid, while Bulk modulus represents the fluid's resistance to compression and plays a crucial role in determining the speed of sound in a compressible medium. Viscosity and surface tension do not directly impact the speed of sound in a compressible fluid subjected to rapid pressure changes. Therefore, the correct answer is C.
4. When analyzing a power plant, which of the following is NOT considered a part of the system?
- A. The fuel being burned.
- B. The working fluid (e.g., steam or water).
- C. The turbine that generates electricity.
- D. The surrounding air.
Correct answer: D
Rationale: In a power plant system, the components directly involved in the energy conversion process are considered part of the system. The fuel being burned provides the heat source, the working fluid transfers this heat energy, and the turbine converts it into mechanical energy to generate electricity. The surrounding air, while it may interact with the system, is not a component that directly participates in the energy conversion process within the power plant system. Therefore, the correct answer is D - The surrounding air. Choices A, B, and C are essential components of a power plant system as they play direct roles in the energy conversion process, unlike the surrounding air.
5. The operating principle of a metal detector relies on:
- A. The static presence of a permanent magnet
- B. The electromotive force induced by a changing magnetic field
- C. The high electrical conductivity of most metals
- D. The unique thermal signature of metallic objects
Correct answer: B
Rationale: The correct answer is B. Metal detectors work based on the principle of electromotive force induced by a changing magnetic field. When a metal object comes into contact with the detector's magnetic field, it disrupts the field, inducing a current in the metal that can be detected. This principle allows metal detectors to identify the presence of metallic objects without relying on the static presence of a permanent magnet, the high electrical conductivity of metals, or the thermal signature of the objects. Choice A is incorrect because metal detectors do not rely on a static magnet but on the interaction of metals with a changing magnetic field. Choice C is incorrect because while metals do have high electrical conductivity, this is not the principle underlying metal detectors. Choice D is incorrect because metal detectors do not operate based on the thermal signature of objects, but rather on their interaction with magnetic fields.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access