in fluid machinery pumps are designed to primarily increase the fluids
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. In fluid machinery, pumps are designed to primarily increase the fluid's:

Correct answer: A

Rationale: Pumps in fluid machinery are designed to primarily increase the fluid's pressure. This increase in pressure allows the fluid to flow through the system efficiently and overcome resistance. While pumps can also impact the velocity of the fluid to some extent, their main function is to elevate the pressure to facilitate the movement of the fluid within the system. Choice B is incorrect because pumps do not focus solely on increasing velocity. Choice C is incorrect as while pumps can affect velocity, their primary purpose is to boost pressure. Choice D is incorrect as pumps aim to increase either the pressure, velocity, or both.

2. Faraday's law of electromagnetic induction states that a changing magnetic field in a conductor induces a/an:

Correct answer: B

Rationale: Faraday's law of electromagnetic induction states that a changing magnetic field induces an electromotive force in a conductor. This electromotive force is responsible for generating electricity in power plants and various electrical devices. The induced current is a result of the changing magnetic field, not an increase in resistance (choice A), static electric charge (choice C), or a decrease in capacitance (choice D). Hence, the correct answer is B.

3. A spring has a spring constant of 20 N/m. How much force is needed to compress the spring from 40 cm to 30 cm?

Correct answer: D

Rationale: The change in length of the spring is 40 cm - 30 cm = 10 cm = 0.10 m. The force required to compress or stretch a spring is given by Hooke's Law: F = k × x, where F is the force, k is the spring constant (20 N/m in this case), and x is the change in length (0.10 m). Substituting the values into the formula: F = 20 N/m × 0.10 m = 2 N. Therefore, the correct answer is 2 N. Choice A (200 N) is incorrect because it miscalculates the force. Choice B (80 N) is incorrect as it does not apply Hooke's Law correctly. Choice C (5 N) is incorrect as it underestimates the force required.

4. The specific heat capacity of water is about 2 J/g°C. How much energy would you need to heat 1 kilogram of water by 10°C?

Correct answer: C

Rationale: The formula to calculate the energy required to heat a substance is Q = m × c × ΔT, where m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Given that 1 kilogram of water is equal to 1,000 grams, the mass (m) is 1,000 g, the specific heat capacity (c) of water is 4.2 J/g°C (not 2 J/g°C), and the change in temperature (ΔT) is 10°C. Substituting these values into the formula: Q = 1,000 × 4.2 × 10 = 42,000 J. Therefore, the correct energy required to heat 1 kilogram of water by 10°C is 42,000 J. Choices A, B, and D are incorrect as they do not consider the correct specific heat capacity of water or the conversion of mass to grams.

5. Which of these objects has the greatest momentum?

Correct answer: A

Rationale: Momentum is the product of mass and velocity. The car has the highest momentum because it has the largest mass and a significant velocity.

Similar Questions

In terms of electrical conductivity, semiconductors fall between
A solenoid is a long, tightly wound coil of wire that acts like a bar magnet when current flows through it. The magnetic field lines inside a solenoid are most similar to the field lines around:
How do you determine the velocity of a wave?
When calculating an object’s acceleration, what must you do?
A wave in a rope travels at 12 m/s and has a wavelength of 2 m. What is the frequency?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses