when two identical charged spheres both positively charged are brought close together the electrostatic force between them will be
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. When two identical charged spheres, both positively charged, are brought close together, the electrostatic force between them will be:

Correct answer: D

Rationale: When two positively charged spheres are brought close together, they will experience a repulsive force due to their like charges. The electrostatic force causes the spheres to repel each other, making the correct answer D: Strongly repulsive. The force is not dependent on the material of the spheres, and the force is definitely not zero, as like charges repel. Choice A is incorrect as like charges do not attract each other. Choice C is incorrect as like charges repel, not attract.

2. During adiabatic compression of a gas, what happens to its temperature?

Correct answer: C

Rationale: During adiabatic compression, the gas's temperature increases. This is because no heat is exchanged with the surroundings, and all the work done on the gas results in an increase in internal energy. Choice A is incorrect because the temperature does not remain constant during adiabatic compression. Choice B is incorrect as the temperature does not decrease. Choice D is incorrect as the behavior of the gas's temperature during adiabatic compression is predictable based on the principles of thermodynamics.

3. A hummingbird’s wings beat at 25 beats per second. What is the period of the wing beating in seconds?

Correct answer: A

Rationale: The period represents the time for one complete cycle of the wing beating. To calculate the period, you take the reciprocal of the frequency. In this case, with the wings beating at 25 beats per second, the period is 1/25, which equals 0.04 seconds. Therefore, choice A, 0.04 seconds, is correct. Choices B, C, and D are incorrect because they do not reflect the correct calculation of the period based on the given frequency of 25 beats per second.

4. An electromagnet is holding a 1,500-kg car at a height of 25 m above the ground. The magnet then experiences a power outage, and the car falls to the ground. Which of the following is false?

Correct answer: C

Rationale: When the car falls to the ground, its potential energy is converted to kinetic energy as it accelerates downwards. Upon impact with the ground, the car's kinetic energy is dissipated in various forms, such as sound energy, heat, and deformation energy. Therefore, the car does not retain its initial potential energy of 367.5 kJ when it hits the ground. Choice A is true because the potential energy of the car can be calculated as mgh = 1500 kg * 9.8 m/s^2 * 25 m = 367,500 J = 367.5 kJ. Choice B is true because as the car falls, its potential energy is converted to kinetic energy. Choice D is true as the kinetic energy is eventually dissipated into other forms upon impact.

5. Ocean waves build during a storm until there is a vertical distance from the high point to the low point of 6 meters and a horizontal distance of 9 meters between adjacent crests. The waves hit the shore every 5 seconds. What is the speed of the waves?

Correct answer: B

Rationale: To find the speed of the waves, we use the formula: speed = wavelength / period. The wavelength is the horizontal distance between adjacent crests, which is 9 meters in this case. The period is the time it takes for one wave to pass a fixed point, given as 5 seconds. Therefore, speed = 9 meters / 5 seconds = 1.8 m/s. Choice A (1.2 m/s) is incorrect because it miscalculates the speed. Choice C (2.0 m/s) and Choice D (2.4 m/s) are incorrect as they do not correctly calculate the speed using the provided data.

Similar Questions

The Prandtl number (Pr) is a dimensionless property relating:
A 110-volt appliance draws 0 amperes. How many watts of power does it require?
If a wave has a frequency of 60 hertz, which of the following is true?
What is the electric field inside a hollow conductor with a net charge?
For steady, incompressible flow through a pipe, the mass flow rate (ṁ) is related to the fluid density (ρ), cross-sectional area (A), and average velocity (v) via the continuity equation:

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses