a concave mirror with a focal length of 2 cm forms a real image of an object at an image distance of 6 cm what is the objects distance from the mirror
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. A concave mirror with a focal length of 2 cm forms a real image of an object at an image distance of 6 cm. What is the object's distance from the mirror?

Correct answer: B

Rationale: The mirror formula, 1/f = 1/do + 1/di, can be used to solve for the object distance. Given that the focal length (f) is 2 cm and the image distance (di) is 6 cm, we can substitute these values into the formula to find the object distance. Plugging in f = 2 cm and di = 6 cm into the formula gives us 1/2 = 1/do + 1/6. Solving for do, we get do = 6 cm. Therefore, the object's distance from the mirror is 6 cm. Choice A (3 cm), Choice C (12 cm), and Choice D (30 cm) are incorrect distances as the correct object distance is determined to be 6 cm.

2. During adiabatic compression of a gas, what happens to its temperature?

Correct answer: C

Rationale: During adiabatic compression, the gas's temperature increases. This is because no heat is exchanged with the surroundings, and all the work done on the gas results in an increase in internal energy. Choice A is incorrect because the temperature does not remain constant during adiabatic compression. Choice B is incorrect as the temperature does not decrease. Choice D is incorrect as the behavior of the gas's temperature during adiabatic compression is predictable based on the principles of thermodynamics.

3. A closed system undergoes a cyclic process, returning to its initial state. What can be said about the net work done (Wnet) by the system over the entire cycle?

Correct answer: C

Rationale: For a closed system undergoing a cyclic process and returning to its initial state, the net work done (Wnet) over the entire cycle can be positive, negative, or zero. This is because the work done is determined by the area enclosed by the cycle on a P-V diagram, and this area can be above, below, or intersecting the zero work axis, leading to positive, negative, or zero net work done. Choice A is incorrect because Wnet is not always positive; it depends on the specific path taken on the P-V diagram. Choice B is incorrect as Wnet is not always negative; it varies based on the enclosed area. Choice D is incorrect because Wnet is not necessarily equal to the total heat transferred into the system; it depends on the specifics of the cycle and is not a direct relationship.

4. Diamagnetism refers to a material's weak:

Correct answer: B

Rationale: Diamagnetism refers to a material's weak repulsion to magnetic fields. When diamagnetic materials are placed in an external magnetic field, they create an opposing magnetic field, leading to repulsion. This is why choice B, 'Repulsion to magnetic fields,' is the correct answer. Choices A, C, and D are incorrect because diamagnetic materials do not exhibit attraction, amplification, or indifference to magnetic fields.

5. Jack stands in front of a plane mirror. If he is 5 feet away from the mirror, how far away from Jack is his image?

Correct answer: D

Rationale: When Jack stands in front of a plane mirror, his image appears the same distance behind the mirror as Jack is in front of it. Therefore, if Jack is 5 feet away from the mirror, his image will also appear 5 feet behind the mirror. The total distance from Jack to his image is the sum of these distances, which equals 10 feet. Choices A, B, and C are incorrect because the image distance is not half of the total distance but the same as the object's distance from the mirror.

Similar Questions

The frequency of an alternating current (AC) refers to the number of times it changes direction per unit time. This is measured in:
A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?
A rock has a volume of 6 cm3 and a mass of 24 g. What is its density?
A wave moves through its medium at 20 m/s with a wavelength of 4 m. What is the frequency of the wave?
When a charged particle moves through a vacuum at a constant speed, it generates:

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses