HESI A2
HESI A2 Physics Quizlet
1. A concave mirror with a focal length of 2 cm forms a real image of an object at an image distance of 6 cm. What is the object's distance from the mirror?
- A. 3 cm
- B. 6 cm
- C. 12 cm
- D. 30 cm
Correct answer: B
Rationale: The mirror formula, 1/f = 1/do + 1/di, can be used to solve for the object distance. Given that the focal length (f) is 2 cm and the image distance (di) is 6 cm, we can substitute these values into the formula to find the object distance. Plugging in f = 2 cm and di = 6 cm into the formula gives us 1/2 = 1/do + 1/6. Solving for do, we get do = 6 cm. Therefore, the object's distance from the mirror is 6 cm. Choice A (3 cm), Choice C (12 cm), and Choice D (30 cm) are incorrect distances as the correct object distance is determined to be 6 cm.
2. A 5-kg block is suspended from a spring, causing the spring to stretch 10 cm from equilibrium. What is the spring constant for this spring?
- A. 4.9 N/cm
- B. 9.8 N/cm
- C. 49 N/cm
- D. 50 N/cm
Correct answer: C
Rationale: The spring constant (k) can be calculated using Hooke's Law formula: F = -kx, where F is the force applied, k is the spring constant, and x is the displacement from equilibrium. In this case, the force applied is equal to the weight of the block, F = mg, where m = mass of the block = 5 kg and g = acceleration due to gravity = 9.8 m/s^2. The displacement x = 10 cm = 0.1 m. Substituting the values, we have: 5 kg * 9.8 m/s^2 = k * 0.1 m. Solving for k gives k = 5 * 9.8 / 0.1 = 49 N/m. Therefore, the spring constant for this spring is 49 N/cm. Choice A (4.9 N/cm) is incorrect because it is one decimal place lower than the correct answer. Choice B (9.8 N/cm) is incorrect as it does not account for the correct calculation based on the given information. Choice D (50 N/cm) is incorrect because it is slightly higher than the accurate value obtained through the calculations.
3. A constant force is exerted on a stationary object. In this scenario, work is:
- A. Performed
- B. Not performed
- C. Partially performed
- D. Inconclusive without further information
Correct answer: B
Rationale: Work is only done when a force causes displacement. Since the object is stationary, no displacement occurs, and therefore, no work is performed. Choice A is incorrect because work requires both force and displacement. Choice C is incorrect as there is no partial work - work is either done or not done. Choice D is incorrect as the scenario provided is clear - the object is stationary, so no work is being performed.
4. An object with a charge of 4 μC is placed 50 cm from another object with a charge twice as great. What is the magnitude of the resulting repulsive force?
- A. 0.1152 N
- B. 1.152 N
- C. 10^−3 N
- D. 2.5 × 10^−3 N
Correct answer: D
Rationale: The force between two charges is calculated using Coulomb's Law, which states that the force is proportional to the product of the two charges and inversely proportional to the square of the distance between them. Given that one charge is twice as great as the other and the distance between them is 50 cm, we can calculate the repulsive force. The magnitude of the resulting repulsive force is 2.5 × 10^−3 N. Choice A is incorrect as it does not match the calculated value. Choice B is incorrect as it is significantly higher than the correct answer. Choice C is incorrect as it represents 10^−3 N, which is lower than the calculated value.
5. How do a scalar quantity and a vector quantity differ?
- A. A scalar quantity has both magnitude and direction, and a vector does not.
- B. A scalar quantity has direction only, and a vector has only magnitude.
- C. A vector has both magnitude and direction, and a scalar quantity has only magnitude.
- D. A vector has only direction, and a scalar quantity has only magnitude.
Correct answer: C
Rationale: The correct answer is C. The main difference between a scalar quantity and a vector quantity lies in the presence of direction. A vector quantity has both magnitude and direction, while a scalar quantity has magnitude only, without any specified direction. Examples of scalar quantities include distance, speed, temperature, and energy, whereas examples of vector quantities include displacement, velocity, force, and acceleration. Choices A, B, and D are incorrect because they incorrectly describe the characteristics of scalar and vector quantities.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access