HESI A2
HESI A2 Physics Practice Test
1. Fluid dynamics is a subfield of fluid mechanics concerned with:
- A. Equilibrium properties of fluids at rest (Fluid Statics)
- B. The motion and behavior of fluids under various conditions
- C. Phase transitions of fluids between liquid, gas, and solid states
- D. Engineering applications of fluids (related but broader than fluid dynamics)
Correct answer: B
Rationale: Fluid dynamics is the study of fluids in motion and their behavior under different conditions, including how they flow, mix, and interact with their surroundings. It focuses on the dynamic aspects of fluids rather than their static properties when at rest, which is the realm of fluid statics. Phase transitions of fluids between liquid, gas, and solid states are more related to thermodynamics than fluid dynamics. While engineering applications involve fluid dynamics, the field itself is more specialized in studying the movement and behavior of fluids.
2. A spring has a spring constant of 20 N/m. How much force is needed to compress the spring from 40 cm to 30 cm?
- A. 200 N
- B. 80 N
- C. 5 N
- D. 2 N
Correct answer: D
Rationale: The change in length of the spring is 40 cm - 30 cm = 10 cm = 0.10 m. The force required to compress or stretch a spring is given by Hooke's Law: F = k × x, where F is the force, k is the spring constant (20 N/m in this case), and x is the change in length (0.10 m). Substituting the values into the formula: F = 20 N/m × 0.10 m = 2 N. Therefore, the correct answer is 2 N. Choice A (200 N) is incorrect because it miscalculates the force. Choice B (80 N) is incorrect as it does not apply Hooke's Law correctly. Choice C (5 N) is incorrect as it underestimates the force required.
3. A circular running track has a circumference of 2,500 meters. What is the radius of the track?
- A. 1,000 m
- B. 400 m
- C. 25 m
- D. 12 m
Correct answer: B
Rationale: The radius of a circular track can be calculated using the formula: Circumference = 2 × π × radius. Given that the circumference of the track is 2,500 m, we can plug this into the formula and solve for the radius: 2,500 = 2 × π × radius. Dividing both sides by 2π gives: radius = 2,500 / (2 × 3.1416) ≈ 397.89 m. Therefore, the closest answer is 400 m, making option B the correct choice. Option A (1,000 m) is too large, option C (25 m) is too small, and option D (12 m) is significantly smaller than the calculated radius.
4. As a vehicle positioned at the peak of a hill rolls downhill, its potential energy transforms into:
- A. Thermal energy
- B. Neither thermal nor kinetic energy
- C. A combination of thermal and kinetic energy
- D. Kinetic energy
Correct answer: D
Rationale: The correct answer is D: Kinetic energy. Potential energy is converted into kinetic energy as the vehicle moves downhill. Kinetic energy is the energy possessed by a moving object. Thermal energy is not produced in this scenario because the energy transformation is mainly from potential to kinetic energy, not involving heat generation. Choices A, B, and C are incorrect because the primary energy transformation in this scenario is from potential to kinetic energy, not involving thermal energy.
5. Which of the following materials has the lowest density?
- A. Water
- B. Cork
- C. Aluminum
- D. Steel
Correct answer: B
Rationale: Cork has the lowest density among the given options. Cork is a lightweight material derived from the bark of cork oak trees and is known for its low density, making it float on water. Water, aluminum, and steel have higher densities compared to cork. Water is denser than cork because it has a consistent density of 1 g/cm³. Aluminum and steel are metals with much higher densities due to their atomic structures, making them denser than cork.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access