if 5 g of nacl 1 mole of nacl are dissolved in enough water to make 500 l of solution what is the molarity of the solution
Logo

Nursing Elites

HESI A2

Chemistry Hesi A2

1. If 5 g of NaCl (1 mole of NaCl) is dissolved in enough water to make 500 L of solution, what is the molarity of the solution?

Correct answer: C

Rationale: Molarity is defined as the number of moles of solute per liter of solution. In this case, 5 g of NaCl represents 1 mole of NaCl. Given that this 1 mole is dissolved in 500 L of solution, the molarity of the solution can be calculated as follows: Molarity = moles of solute / liters of solution = 1 mole / 500 L = 0.002 M. However, the molarity is usually expressed in moles per liter, so to convert to M, you divide by 0.085 L (which is 500 L in liters) to get 11.7 M. Choice A is incorrect because the molarity is not 1.0 M. Choice B is incorrect because the molarity is not 2.0 M. Choice D is incorrect because the molarity can be determined from the information provided.

2. What type of starch is glycogen?

Correct answer: B

Rationale: Glycogen is classified as animal starch, not plant starch. It is the storage form of glucose in animals, primarily found in the liver and muscles. Choice A (Plant starch) is incorrect because glycogen is not derived from plants. Choice C (Glucose) is incorrect as glucose is a monosaccharide and not a type of starch. Choice D (Cellulose) is incorrect as cellulose is a structural polysaccharide found in plant cell walls, not the same as glycogen.

3. The molar mass of some gases is as follows: carbon monoxide—28.01 g/mol; helium—4.00 g/mol; nitrogen—28.01 g/mol; and oxygen—32.00 g/mol. Which would you expect to diffuse most rapidly?

Correct answer: B

Rationale: The rate of diffusion is inversely proportional to the molar mass of the gas. Helium has the lowest molar mass among the given gases, making it the lightest and fastest gas to diffuse. Therefore, helium would be expected to diffuse most rapidly compared to carbon monoxide, nitrogen, and oxygen. Carbon monoxide, nitrogen, and oxygen have higher molar masses than helium, so they would diffuse more slowly. Therefore, the correct answer is helium.

4. What term is used to describe the emission of particles from an unstable nucleus?

Correct answer: A

Rationale: Radioactivity is the term used to describe the emission of particles from an unstable nucleus. When a nucleus is unstable, it undergoes radioactive decay by emitting particles such as alpha or beta particles. This process releases energy and transforms the unstable nucleus into a more stable configuration. Choice B, 'Radiation,' is a broad term that encompasses various forms of energy emitted from a source; it is not specific to the emission from an unstable nucleus. Choice C, 'Decay,' is closely related but doesn't specifically indicate the emission of particles from an unstable nucleus. Choice D, 'Fusion,' refers to the process of combining nuclei to form a heavier nucleus, not the emission of particles from an unstable nucleus.

5. Which elements are typically involved in hydrogen bonding?

Correct answer: D

Rationale: Hydrogen bonding occurs between hydrogen and highly electronegative atoms such as fluorine, oxygen, and nitrogen. These atoms have a strong pull on the shared electrons, leading to a partial negative charge on them, which allows them to form hydrogen bonds with hydrogen or other electronegative atoms. Choice A is incorrect because carbon is not typically involved in hydrogen bonding. Choice B is incorrect because chlorine is not as electronegative as nitrogen, and choice C is incorrect because nitrogen is more electronegative than chlorine.

Similar Questions

How are elements arranged in the periodic table?
Which type of radiation emits helium ions and can be stopped by a piece of paper?
What is atomic mass?
What is the correct name of MgO?
Here are the solubilities of four substances at 0°C, in grams of solute per 100 mL of water. If the temperature increases to 20°C, what would you expect to happen to the solubility figures?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses