which of the following substances is a base
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry Questions

1. Which of the following substances is a base?

Correct answer: C

Rationale: The correct answer is 'Ammonia' (Choice C) as it is a common example of a base. Bases are substances that release hydroxide ions (OH-) in aqueous solutions, helping to increase the pH level. Ammonia is a weak base that can accept a proton (H+) to form ammonium hydroxide. In contrast, water (Choice A), sodium chloride (Choice B), and salt (Choice D) are not bases; water is neutral, while sodium chloride and salt are neutral compounds composed of a cation and an anion.

2. What are the three types of intermolecular forces?

Correct answer: B

Rationale: The three types of intermolecular forces are hydrogen bonding, dipole interactions, and dispersion forces. Option A includes ionic and covalent bonds, which are intramolecular forces, not intermolecular. Option C includes van der Waals forces, which encompass dipole interactions and dispersion forces, but also includes ionic and covalent bonds. Option D is close but misses dipole interactions, which are distinct from hydrogen bonding and dispersion forces. Therefore, option B is the correct choice as it includes the three specific types of intermolecular forces.

3. Which law states that matter can neither be created nor destroyed during a chemical reaction?

Correct answer: B

Rationale: The correct answer is B, the Law of Conservation of Mass. This law, formulated by Antoine Lavoisier, states that matter cannot be created or destroyed in a chemical reaction. It is a fundamental principle in chemistry that explains the preservation of mass during chemical reactions, indicating that the total mass of the reactants is equal to the total mass of the products. The other choices are incorrect because: A: The Law of Conservation of Energy states that energy cannot be created or destroyed, not matter. C: The Law of Constant Composition refers to compounds having the same composition by mass regardless of their source or how they were prepared, not about the conservation of matter in reactions. D: The Law of Multiple Proportions describes the ratios in which elements combine to form compounds, not the conservation of mass.

4. Radioactive isotopes are frequently used in medicine. What kind of half-life would a medical isotope probably have?

Correct answer: B

Rationale: Medical isotopes used in diagnosis and treatment need to have a relatively short half-life to minimize radiation exposure to patients. If the half-life were too long (such as many years) or even years-long, the radiation would persist for too long and could be harmful to the patient. Seconds-long half-lives would not provide enough time for the isotope to be effective. Days-long half-lives strike a balance between providing enough time for the isotope to be used effectively and minimizing radiation exposure.

5. Which of the following is a characteristic of a chemical change?

Correct answer: B

Rationale: The production of gas is a characteristic of a chemical change. During a chemical change, new substances are formed, often with the release or absorption of energy. The production of gas is a significant indicator of a chemical change because it indicates the formation of new compounds through chemical reactions. Choices A, C, and D are not characteristics of chemical changes. Changes in shape, melting, and freezing are physical changes where the substance's identity remains the same, unlike in chemical changes where new substances with different properties are formed.

Similar Questions

Which element has the chemical symbol 'Fe'?
What is the simplest form of a substance that is represented by a letter or letters?
What is the correct name of ZnSO₄?
What is atomic mass?
How many pairs of electrons are shared between two atoms in a single bond?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses