which of the following elements is the most electronegative
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry Questions

1. Which of the following elements is the most electronegative?

Correct answer: B

Rationale: Fluorine is the most electronegative element on the periodic table. It has the highest electronegativity value, indicating its strong ability to attract electrons in a chemical bond. This property makes it highly reactive, explaining why it is the correct answer in this question. Oxygen and Nitrogen are also electronegative elements, but they are not as electronegative as Fluorine. Sodium, on the other hand, is not electronegative; it is an electropositive element.

2. What is the product of the decomposition of water?

Correct answer: A

Rationale: The correct answer is A: Hydrogen and oxygen. When water undergoes decomposition, it breaks down into hydrogen and oxygen gases through a process known as electrolysis. This reaction is represented by 2H₂O → 2H₂ + O₂. Choice B, carbon dioxide, is incorrect as it is not a product of water decomposition. Choice C, nitrogen and hydrogen, is incorrect as water decomposes into hydrogen and oxygen, not nitrogen. Choice D, methane, is incorrect as methane is not a product of water decomposition.

3. What type of bond is an electrostatic attraction between two oppositely charged ions?

Correct answer: C

Rationale: An ionic bond forms when one atom transfers electrons to another, resulting in the formation of positively and negatively charged ions. The attraction between these oppositely charged ions creates an electrostatic bond, known as an ionic bond. Choice A, covalent bonds, involve the sharing of electrons, not the transfer. Choice B, metallic bonds, occur between metal atoms and involve a 'sea of electrons' that are delocalized. Choice D, hydrogen bonds, are much weaker interactions between hydrogen atoms and other electronegative atoms like oxygen or nitrogen.

4. What determines polarity in a molecule?

Correct answer: C

Rationale: Polarity in a molecule is determined by the difference in electronegativity between the atoms forming the bond. The greater the difference in electronegativity, the more polar the bond and molecule become. This difference leads to an uneven distribution of electron density within the bond, creating partial positive and negative charges on the atoms involved. Choices A, B, and D are incorrect. Bond length and strength do not determine polarity, and molecular weight is not directly related to the polarity of a molecule.

5. The molar mass of glucose is 180 g/mol. If an IV solution contains 5 g of glucose in 100 g of water, what is the molarity of the solution?

Correct answer: C

Rationale: To calculate the molarity of the solution, we first need to determine the moles of solute (glucose) and solvent (water) separately. The molar mass of glucose is 180 g/mol. First, calculate the moles of glucose: 5 g / 180 g/mol = 0.02778 mol of glucose. Next, calculate the moles of water: 100 g / 18 g/mol = 5.56 mol of water. Now, calculate the total moles in the solution: 0.02778 mol glucose + 5.56 mol water = 5.5878 mol. Finally, calculate the molarity: Molarity = moles of solute / liters of solution. Since the total mass of the solution is 100 g + 5 g = 105 g = 0.105 kg, which is equal to 0.105 L, the molarity is 5.5878 mol / 0.105 L = 53.22 M, which rounds to 2.8M. Therefore, the correct answer is 2.8M. Choices A, B, and D are incorrect because they do not reflect the accurate molarity calculation based on the moles of solute and volume of the solution.

Similar Questions

What is the pH of acids?
On what concept is Kelvin based?
When an acid is added to a base, water and a salt form. What kinds of bonds form in these two compounds?
If gas A has four times the molar mass of gas B, you would expect it to diffuse through a plug ___________.
What distinguishes one allotrope from another?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses