what part of chemistry deals with the quantities and numeric relationships between compounds in a chemical reaction
Logo

Nursing Elites

HESI A2

Chemistry HESI A2 Quizlet

1. Which branch of chemistry deals with the quantities and numeric relationships between compounds in a chemical reaction?

Correct answer: A

Rationale: Stoichiometry is the branch of chemistry that deals with the quantitative relationships between reactants and products in chemical reactions. It involves the calculation of quantities of substances consumed and produced in a chemical reaction based on the balanced chemical equation. Choice B, 'Molecular chemistry,' is incorrect as it focuses on the structure, properties, and reactions of molecules. Choice C, 'Atomic chemistry,' is incorrect as it primarily deals with the study of atoms and their interactions. Choice D, 'Thermodynamics,' is incorrect as it pertains to the study of energy and heat transfer in chemical and physical processes.

2. If oxygen is in a compound, what would its oxidation number be?

Correct answer: B

Rationale: Oxygen typically has an oxidation number of -2 in compounds because it tends to gain electrons. This is due to its high electronegativity, which leads to oxygen attracting electrons towards itself in a chemical bond. Choice A (2) is incorrect because oxygen doesn't have a +2 oxidation number in compounds. Choice C (0) is incorrect as oxygen rarely has an oxidation number of 0 in compounds. Choice D (-1) is incorrect as oxygen's oxidation number in compounds is typically -2, not -1.

3. What is atomic mass?

Correct answer: B

Rationale: Atomic mass, also known as atomic weight, is the sum of the number of protons and neutrons in an atom. It represents the average mass of an atom of an element, taking into account the different isotopes and their relative abundance. Neutrons contribute to the atomic mass alongside protons, while the number of neutrons alone is not the definition of atomic mass. Choice A is incorrect because it refers only to the number of protons, not the complete atomic mass. Choice C is incorrect as it focuses solely on the number of neutrons, excluding the contribution of protons. Choice D is incorrect as it mentions the 'average weight of an element,' which is related to atomic mass but does not encapsulate the specific definition of atomic mass as the sum of protons and neutrons.

4. How many neutrons are in an atom of uranium-235?

Correct answer: A

Rationale: The correct answer is A: '92'. To determine the number of neutrons in an atom, you subtract the atomic number (number of protons) from the atomic mass number. For uranium-235, the atomic number is 92, and the atomic mass number is 235. Subtracting 92 from 235 gives us 143 neutrons in an atom of uranium-235. Therefore, options B, C, and D are incorrect as they do not represent the correct number of neutrons in an atom of uranium-235.

5. Here are the solubilities of four substances at 0°C, in grams of solute per 100 mL of water. If the temperature increases to 20°C, what would you expect to happen to the solubility figures?

Correct answer: C

Rationale: Solubility generally tends to increase with temperature for most solid solutes in liquid solvents due to higher kinetic energy leading to better solute-solvent interactions. As the temperature increases from 0°C to 20°C, all four solubility figures are expected to increase. Choice A is incorrect because solubility tends to increase with temperature. Choice B is incorrect as well for the same reason. Choice D is incorrect because the solubility of solid solutes typically increases with temperature.

Similar Questions

How many electron pairs are shared to form a double covalent bond?
What is stoichiometry?
What distinguishes one allotrope from another?
What is the correct formula for iron III oxide?
How many moles of potassium bromide are in 25 mL of a 4 M KBr solution?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses