HESI A2
HESI A2 Chemistry Practice Questions
1. What distinguishes one allotrope from another?
- A. Arrangement of atoms
- B. Gram atomic mass
- C. Physical state
- D. Stability
Correct answer: A
Rationale: Allotropes are different forms of the same element that exist in the same physical state but have different structures. The arrangement of atoms is what distinguishes one allotrope from another, determining their unique properties and characteristics. Gram atomic mass (Choice B) is a constant value for a specific element and does not change between different allotropes. Physical state (Choice C) refers to whether a substance is a solid, liquid, or gas, which can be the same for different allotropes of an element. Stability (Choice D) can vary between different allotropes, but it is not what always differentiates one allotrope from another. Therefore, the correct answer is the arrangement of atoms, as it is the key factor that varies across different allotropes.
2. How many neutrons are in an atom of helium-4?
- A. 2
- B. 3
- C. 4
- D. 6
Correct answer: A
Rationale: The atomic number of helium is 2, indicating it has 2 protons. Helium-4, the most common isotope of helium, has 2 neutrons in addition to its 2 protons. Therefore, the correct answer is 2 neutrons in an atom of helium-4. Choice B, C, and D are incorrect as they do not match the correct composition of helium-4, which consists of 2 protons and 2 neutrons.
3. What is the role of a catalyst in a chemical reaction?
- A. Slows down the reaction
- B. Has no effect
- C. Speeds up the reaction
- D. Stops the reaction
Correct answer: C
Rationale: A catalyst speeds up a chemical reaction by lowering the activation energy required for the reaction to occur. It does not get consumed in the reaction and remains unchanged at the end, allowing it to facilitate multiple reaction cycles. Choice A is incorrect because a catalyst actually speeds up the reaction. Choice B is incorrect because catalysts do have an effect by accelerating the reaction. Choice D is incorrect because catalysts do not stop the reaction, but rather increase the reaction rate.
4. Which type of radiation emits helium ions and can be stopped by a piece of paper?
- A. Beta radiation
- B. Alpha radiation
- C. Gamma radiation
- D. X-ray radiation
Correct answer: B
Rationale: Alpha radiation emits helium ions, which are helium nuclei without electrons, making them positively charged. These ions are relatively large and heavy compared to beta and gamma radiation. Due to their size and charge, alpha particles interact strongly with matter and are easily stopped. A piece of paper or even human skin can effectively block alpha radiation. Therefore, alpha radiation is the type of radiation that can be stopped by a piece of paper. Beta radiation consists of fast-moving electrons and can penetrate further into materials than alpha radiation, thus not stopped by a piece of paper. Gamma radiation is highly penetrating and requires dense materials like lead or concrete to block it effectively. X-ray radiation, similar to gamma radiation, is also highly penetrating and cannot be stopped by a piece of paper.
5. What determines polarity in a molecule?
- A. Bond length
- B. Bond strength
- C. Electronegativity
- D. Molecular weight
Correct answer: C
Rationale: Polarity in a molecule is determined by the difference in electronegativity between the atoms forming the bond. The greater the difference in electronegativity, the more polar the bond and molecule become. This difference leads to an uneven distribution of electron density within the bond, creating partial positive and negative charges on the atoms involved. Choices A, B, and D are incorrect. Bond length and strength do not determine polarity, and molecular weight is not directly related to the polarity of a molecule.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access