HESI A2
Chemistry Hesi A2
1. A radioactive isotope has a half-life of 20 years. How many grams of a 6-gram sample will remain after 40 years?
- A. 8
- B. 6
- C. 3
- D. 1.5
Correct answer: C
Rationale: The half-life of a radioactive isotope is the time it takes for half of the original sample to decay. After each half-life period, half of the initial sample remains. In this case, after the first 20 years, half of the 6-gram sample (3 grams) will remain. After another 20 years (total of 40 years), half of the remaining 3 grams will remain, which is 1.5 grams. Therefore, 3 grams will be left after 40 years. Choice A is incorrect as it doesn't consider the concept of half-life and incorrectly suggests an increase in the sample. Choice B is incorrect as it assumes no decay over time. Choice D is incorrect as it miscalculates the remaining amount after two half-life periods.
2. What form of radiation is composed of electrons traveling at around 16,000 km/sec?
- A. Alpha radiation
- B. Beta radiation
- C. Gamma radiation
- D. Delta radiation
Correct answer: B
Rationale: Beta radiation is composed of high-energy electrons (β- particles) or positrons (β+ particles) traveling at considerable speeds. In this case, the electrons traveling at around 16,000 km/sec align with the characteristics of beta radiation, making it the correct choice. Alpha radiation consists of helium nuclei, gamma radiation is electromagnetic radiation of high frequency, and delta radiation is not a recognized form of radiation, making them all incorrect choices.
3. What is 0 K equal to in °C?
- A. -300°C
- B. -273°C
- C. -250°C
- D. -200°C
Correct answer: B
Rationale: 0 Kelvin, also known as absolute zero, is equal to -273°C. This is the point at which all molecular motion stops, making it the lowest possible temperature on the Kelvin scale. Choice A (-300°C) is incorrect as it is not the correct conversion of 0 K to °C. Choice C (-250°C) and Choice D (-200°C) are also incorrect as they do not correspond to the accurate conversion of 0 K to °C.
4. A salt solution has a molarity of 5 M. How many moles of this salt are present in 0 L of this solution?
- A. 0
- B. 1.5
- C. 2
- D. 3
Correct answer: A
Rationale: Molarity is defined as the number of moles of solute per liter of solution. A molarity of 5 M indicates there are 5 moles of salt in 1 liter of the solution. Since the volume of the solution is 0 liters, multiplying the molarity by 0 liters results in 0 moles of salt (5 moles/L x 0 L = 0 moles). Therefore, the correct answer is 0. Option B, 1.5, is incorrect because it doesn't consider the volume being 0 liters. Options C and D, 2 and 3 respectively, are also incorrect as they do not account for the zero volume of the solution. Hence, there are no moles of salt present in 0 liters of the solution.
5. What is atomic mass?
- A. Number of protons in an atom
- B. Sum of protons and neutrons
- C. Number of neutrons in an atom
- D. Average weight of an element
Correct answer: B
Rationale: Atomic mass, also known as atomic weight, is the sum of the number of protons and neutrons in an atom. It represents the average mass of an atom of an element, taking into account the different isotopes and their relative abundance. Neutrons contribute to the atomic mass alongside protons, while the number of neutrons alone is not the definition of atomic mass. Choice A is incorrect because it refers only to the number of protons, not the complete atomic mass. Choice C is incorrect as it focuses solely on the number of neutrons, excluding the contribution of protons. Choice D is incorrect as it mentions the 'average weight of an element,' which is related to atomic mass but does not encapsulate the specific definition of atomic mass as the sum of protons and neutrons.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access