HESI A2
HESI A2 Chemistry Practice Questions
1. Which element has an atomic mass greater than that of sodium?
- A. Boron
- B. Oxygen
- C. Fluorine
- D. Silicon
Correct answer: D
Rationale: Silicon has an atomic mass greater than that of sodium. The atomic mass of silicon is approximately 28.0855 u, whereas the atomic mass of sodium is approximately 22.9898 u. Therefore, silicon has a greater atomic mass compared to sodium. Boron, Oxygen, and Fluorine have atomic masses lower than sodium, making them incorrect choices in this context.
2. Which of the following is a characteristic of an exothermic reaction?
- A. It absorbs heat
- B. It releases heat
- C. It remains neutral
- D. It requires energy input
Correct answer: B
Rationale: An exothermic reaction is characterized by the release of heat. During an exothermic reaction, energy is released in the form of heat to the surroundings, resulting in a temperature increase. This distinguishes it from endothermic reactions, which absorb heat from the surroundings. Choice A is incorrect because exothermic reactions do not absorb heat; instead, they release heat. Choice C is incorrect as exothermic reactions do not remain neutral; they involve a net release of energy. Choice D is incorrect as exothermic reactions do not require energy input; instead, they release energy.
3. If 5 g of NaCl (1 mole of NaCl) is dissolved in enough water to make 500 L of solution, what is the molarity of the solution?
- A. 1.0 M
- B. 2.0 M
- C. 11.7 M
- D. The answer cannot be determined from the information given.
Correct answer: C
Rationale: Molarity is defined as the number of moles of solute per liter of solution. In this case, 5 g of NaCl represents 1 mole of NaCl. Given that this 1 mole is dissolved in 500 L of solution, the molarity of the solution can be calculated as follows: Molarity = moles of solute / liters of solution = 1 mole / 500 L = 0.002 M. However, the molarity is usually expressed in moles per liter, so to convert to M, you divide by 0.085 L (which is 500 L in liters) to get 11.7 M. Choice A is incorrect because the molarity is not 1.0 M. Choice B is incorrect because the molarity is not 2.0 M. Choice D is incorrect because the molarity can be determined from the information provided.
4. What is a benefit of water's ability to make hydrogen bonds?
- A. Lack of cohesiveness
- B. Low surface tension
- C. Use as a nonpolar solvent
- D. High specific heat
Correct answer: D
Rationale: The correct answer is D, high specific heat. Water's ability to form hydrogen bonds results in a high specific heat capacity, allowing it to absorb and release a large amount of heat energy with minimal temperature change. This property is essential for moderating temperature changes in organisms and maintaining stable environmental conditions for life processes. Choices A, lack of cohesiveness, and C, use as a nonpolar solvent, are incorrect. Water actually has high cohesiveness due to its ability to form hydrogen bonds, and it is a polar solvent, not nonpolar. Choice B, low surface tension, is also incorrect as water's hydrogen bonding contributes to its relatively high surface tension.
5. What is the role of a catalyst in a chemical reaction?
- A. Slows down the reaction
- B. Has no effect
- C. Speeds up the reaction
- D. Stops the reaction
Correct answer: C
Rationale: A catalyst speeds up a chemical reaction by lowering the activation energy required for the reaction to occur. It does not get consumed in the reaction and remains unchanged at the end, allowing it to facilitate multiple reaction cycles. Choice A is incorrect because a catalyst actually speeds up the reaction. Choice B is incorrect because catalysts do have an effect by accelerating the reaction. Choice D is incorrect because catalysts do not stop the reaction, but rather increase the reaction rate.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access