HESI A2
HESI A2 Chemistry Practice Questions
1. What is the correct formula for iron III oxide?
- A. IO
- B. FeS
- C. Fe₂O₃
- D. OFe₂₃
Correct answer: C
Rationale: The correct formula for iron III oxide is Fe2O3. In this formula, Fe represents iron and O represents oxygen. Iron III oxide consists of two iron (Fe) ions combined with three oxygen (O) ions. Thus, the correct formula is Fe2O3. Choice A (IO) is incorrect as it does not represent the correct combination of iron and oxygen ions. Choice B (FeS) is incorrect as it represents iron sulfide, not iron III oxide. Choice D (OFe₂₃) is incorrect as it does not follow the correct chemical nomenclature for iron III oxide.
2. What is the energy required to remove the outermost electron from an atom called?
- A. covalent bonding
- B. electronegativity
- C. atomic radius
- D. ionization energy
Correct answer: D
Rationale: Ionization energy is the energy needed to remove the outermost electron from an atom, resulting in the formation of a positively charged ion. The higher the ionization energy, the more difficult it is to extract an electron. Electronegativity, however, measures an atom's ability to attract shared electrons in a chemical bond. Atomic radius refers to the distance from the nucleus to the outermost electron. Covalent bonding involves sharing electron pairs between atoms to create a stable bond. Therefore, the correct answer is ionization energy as it specifically relates to the energy needed to remove an electron from an atom.
3. If electrons are shared equally in a covalent bond, the bond is classified as what?
- A. Polar
- B. Non-polar
- C. Ionic
- D. Hydrogen
Correct answer: B
Rationale: The correct answer is B: Non-polar. In a non-polar covalent bond, electrons are shared equally between the atoms involved, leading to a balanced distribution of charge and no significant difference in electronegativity between the atoms. This equal sharing results in a non-polar bond. Choices A, C, and D are incorrect because a polar bond involves an unequal sharing of electrons, an ionic bond is formed by the transfer of electrons, and a hydrogen bond is a specific type of non-covalent bond.
4. What is the name of the device that separates gaseous ions by their mass-to-charge ratio?
- A. mass spectrometer
- B. interferometer
- C. magnetometer
- D. capacitance meter
Correct answer: A
Rationale: A mass spectrometer is a device specifically designed to separate gaseous ions based on their mass-to-charge ratio. This separation process involves ionization, acceleration of the sample, and the deflection of ions in a magnetic field according to their mass-to-charge ratio. The other options, 'interferometer,' 'magnetometer,' and 'capacitance meter,' do not perform the specific function of separating gaseous ions based on their mass-to-charge ratio, making them incorrect choices.
5. What is the correct electron configuration for carbon?
- A. 1s²2s²2p¹
- B. 1s²2s²2p²
- C. 1s²2s²2p³
- D. 1s²2s²2p⁶3s¹
Correct answer: B
Rationale: The correct electron configuration for carbon is 1s²2s²2p². This configuration indicates that there are 2 electrons in the first energy level (1s²), 2 electrons in the second energy level (2s²), and 2 electrons in the second energy level (2p²). It adheres to the aufbau principle, which states that electrons fill orbitals starting from the lowest energy level, and the Pauli exclusion principle, which states that each electron in an atom must have a unique set of quantum numbers. Choice A is incorrect because it does not fill the 2p orbital correctly. Choice C is incorrect as it exceeds the number of possible electrons in the 2p orbital. Choice D is incorrect as it includes an electron in the 3s orbital, which is not part of the electron configuration for carbon.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access