HESI A2
HESI A2 Chemistry Questions
1. What is the name of the force that holds ionic compounds together?
- A. Covalent bonds
- B. Ionic bonds
- C. Hydrogen bonds
- D. Metallic bonds
Correct answer: B
Rationale: Ionic bonds are the forces that hold ionic compounds together. In ionic compounds, positively and negatively charged ions are held together by electrostatic forces of attraction, forming a stable structure. Covalent bonds involve the sharing of electrons between atoms, not the transfer of electrons like in ionic bonds. Hydrogen bonds are a type of intermolecular force, not the primary force in holding ionic compounds together. Metallic bonds are found in metals and involve a 'sea of electrons' that hold metal atoms together, different from the electrostatic attraction between ions in ionic compounds.
2. To the nearest whole number, what is the mass of one mole of water?
- A. 16 g/mol
- B. 18 g/mol
- C. 20 g/mol
- D. 22 g/mol
Correct answer: B
Rationale: The molar mass of water (H₂O) is calculated by adding the atomic masses of two hydrogen atoms (each with a molar mass of approximately 1 g/mol) and one oxygen atom (with a molar mass of approximately 16 g/mol). Therefore, the molar mass of water is approximately 18 g/mol, making choice B the correct answer. Choice A (16 g/mol) is incorrect because it represents the molar mass of oxygen, not water. Choices C (20 g/mol) and D (22 g/mol) are incorrect as they do not correspond to the molar mass of water.
3. Which of the following is the weakest intermolecular force?
- A. Dipole interactions
- B. Hydrogen bonding
- C. Van der Waals forces
- D. Dispersion forces
Correct answer: D
Rationale: Dispersion forces, also known as London dispersion forces, are the weakest intermolecular forces. They are temporary attractive forces that occur due to momentary shifts in electron distribution within molecules. While dipole interactions, hydrogen bonding, and Van der Waals forces are stronger intermolecular forces, dispersion forces are the weakest because they arise from short-lived fluctuations in electron density. Dipole interactions involve permanent dipoles in molecules, making them stronger than dispersion forces. Hydrogen bonding is stronger than dipole interactions and involves hydrogen atoms bonded to highly electronegative atoms. Van der Waals forces encompass dipole-dipole interactions and dispersion forces, making them stronger than dispersion forces alone.
4. What is the term used when an atom gains one or more electrons?
- A. Cation
- B. Anion
- C. Isotope
- D. Electron
Correct answer: B
Rationale: When an atom gains electrons, it becomes negatively charged and is called an anion. An anion is formed when an atom gains one or more electrons, leading to an excess of negative charge. Choice A, 'Cation,' is incorrect because a cation is formed when an atom loses electrons, resulting in a positively charged ion. Choice C, 'Isotope,' refers to atoms of the same element with different numbers of neutrons and is not related to gaining electrons. Choice D, 'Electron,' is the particle that an atom gains to become an anion, not the term for the atom itself after gaining electrons.
5. What is the typical oxidation state of oxygen in most compounds?
- A. -1
- B. -2
- C. 0
- D. -3
Correct answer: B
Rationale: The correct answer is B: "-2". Oxygen usually exhibits an oxidation state of -2 in most compounds. This is due to oxygen's high electronegativity, which causes it to attract electrons, leading to the gain of two electrons in chemical reactions. Choice A (-1) is incorrect because oxygen rarely has an oxidation state of -1 in compounds. Choice C (0) is incorrect as oxygen does not usually have an oxidation state of zero in compounds. Choice D (-3) is incorrect as oxygen does not commonly have an oxidation state of -3 in compounds.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access