HESI A2
Chemistry HESI A2 Quizlet
1. What determines polarity in a molecule?
- A. Bond length
- B. Bond strength
- C. Electronegativity
- D. Molecular weight
Correct answer: C
Rationale: Polarity in a molecule is determined by the difference in electronegativity between the atoms forming the bond. The greater the difference in electronegativity, the more polar the bond and molecule become. This difference leads to an uneven distribution of electron density within the bond, creating partial positive and negative charges on the atoms involved. Choices A, B, and D are incorrect. Bond length and strength do not determine polarity, and molecular weight is not directly related to the polarity of a molecule.
2. What can stop the penetration of alpha particles?
- A. Aluminum foil
- B. Glass
- C. Piece of paper
- D. Plastic
Correct answer: C
Rationale: Alpha particles can be stopped by a piece of paper due to their low penetration power. The paper acts as a shield, effectively blocking the alpha particles from passing through. In contrast, materials like aluminum foil, glass, and plastic are not as effective as a simple piece of paper in stopping alpha particles. Aluminum foil is more effective against beta particles, gamma rays, and x-rays due to its higher density. Glass and plastic also provide some protection against beta particles and gamma rays, but they are less effective than a piece of paper against alpha particles.
3. What color does phenolphthalein turn in the presence of an acid?
- A. Clear
- B. Blue
- C. Pink
- D. Red
Correct answer: C
Rationale: In the presence of an acid, phenolphthalein turns pink. Phenolphthalein is a pH indicator that is colorless in acidic solutions but turns pink in basic solutions. Therefore, when added to an acidic solution, phenolphthalein will exhibit a pink coloration. Choice A, 'Clear,' is incorrect because phenolphthalein does not remain colorless in the presence of an acid. Choice B, 'Blue,' is incorrect as phenolphthalein does not turn blue in the presence of an acid. Choice D, 'Red,' is incorrect as phenolphthalein does not exhibit a red color in acidic solutions.
4. Which of these intermolecular forces might represent attraction between atoms of a noble gas?
- A. Dipole-dipole interaction
- B. London dispersion force
- C. Keesom interaction
- D. Hydrogen bonding
Correct answer: B
Rationale: Noble gases are non-polar molecules without a permanent dipole moment. The only intermolecular force applicable to noble gases is the London dispersion force, also known as Van der Waals forces. This force is a temporary attractive force resulting from the formation of temporary dipoles in non-polar molecules. Dipole-dipole interactions, Keesom interactions, and hydrogen bonding involve significant dipoles or hydrogen atoms bonded to electronegative atoms, which do not apply to noble gases.
5. What is a benefit of water's ability to make hydrogen bonds?
- A. Lack of cohesiveness
- B. Low surface tension
- C. Use as a nonpolar solvent
- D. High specific heat
Correct answer: D
Rationale: The correct answer is D, high specific heat. Water's ability to form hydrogen bonds results in a high specific heat capacity, allowing it to absorb and release a large amount of heat energy with minimal temperature change. This property is essential for moderating temperature changes in organisms and maintaining stable environmental conditions for life processes. Choices A, lack of cohesiveness, and C, use as a nonpolar solvent, are incorrect. Water actually has high cohesiveness due to its ability to form hydrogen bonds, and it is a polar solvent, not nonpolar. Choice B, low surface tension, is also incorrect as water's hydrogen bonding contributes to its relatively high surface tension.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access