what is the oxidation state of the sulfur atom in sulfuric acid h2so4
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry Practice Test

1. What is the oxidation state of the sulfur atom in sulfuric acid H2SO4?

Correct answer: B

Rationale: In sulfuric acid (H2SO4), sulfur has an oxidation state of +6. The oxidation state is determined by considering the overall charge of the compound and the known oxidation states of other elements. In this case, hydrogen is typically +1, and oxygen is -2. To balance the charges and match the compound's overall charge of 0, sulfur must have an oxidation state of +6. Choice A (4) is incorrect because it doesn't balance the charges in the compound. Choices C (8) and D (10) are also incorrect as they are not valid oxidation states for sulfur in this compound.

2. What charge do Group IIIA elements have?

Correct answer: C

Rationale: Group IIIA elements, also known as Group 13 elements, have a common oxidation state of +3. This is because they have three valence electrons and tend to lose these electrons to achieve a stable electron configuration, resulting in a +3 charge. Choice A (+1) and Choice B (+2) are incorrect because Group IIIA elements typically lose all three valence electrons to attain a stable configuration, leading to a +3 charge. Choice D (0) is incorrect as these elements do not gain electrons but rather lose them, resulting in a positive charge.

3. How does increasing the concentration of reactants affect a chemical reaction?

Correct answer: B

Rationale: Increasing the concentration of reactants leads to more reactant particles being available, which, in turn, increases the likelihood of successful collisions between particles. This higher frequency of collisions results in a higher reaction rate. Therefore, option B, 'Increases the reaction rate,' is the correct answer. Choice A, 'Decreases the reaction rate,' is incorrect because higher reactant concentration usually speeds up the reaction. Choice C, 'Stops the reaction,' is incorrect as increasing concentration promotes more collisions, enhancing the reaction. Choice D, 'Has no effect,' is incorrect because changing reactant concentration directly impacts the reaction rate in most cases.

4. Balance this equation: Zn + HCl → ZnCl + H2.

Correct answer: C

Rationale: The given unbalanced equation is Zn + HCl → ZnCl + H2. To balance it, we need to have equal atoms on both sides of the equation. The balanced equation is 2Zn + 2HCl → 2ZnCl + H2. This balanced equation shows that two atoms of Zn combine with two molecules of HCl to form two molecules of ZnCl and one molecule of H2. Choice A is incorrect because it does not balance the equation. Choice B is incorrect as it does not have the same number of atoms on both sides. Choice D is incorrect because it does not balance the equation properly, resulting in an unequal number of atoms on both sides.

5. Which type of chemical reaction involves two ionic compounds where the reactants yield 'switched partners'?

Correct answer: B

Rationale: The correct answer is 'Double replacement.' In a double replacement reaction, two ionic compounds react by exchanging ions, resulting in the formation of two new compounds where the positive and negative ions have 'switched partners.' This type of reaction is characterized by the exchange of ions between the reactants. Choice A, 'Single replacement,' involves an element replacing another in a compound, not the exchange of partners like in the given scenario. Choice C, 'Synthesis,' is the combination of two or more substances to form a more complex product, not involving the exchange of partners. Choice D, 'Decomposition,' is the breakdown of a compound into simpler substances, which is different from the scenario described in the question.

Similar Questions

What is the correct name of AgNO₃?
What is the oxidation state of the oxygen atom in the compound NaOH?
You contain two odorous gases in vials with porous plugs. Gas A has twice the mass of Gas B. Which observation is most likely?
The molar mass of glucose is 180 g/mol. If an IV solution contains 5 g of glucose in 100 g of water, what is the molarity of the solution?
Which chemical reaction involves the formation of a single product from two or more reactants?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses