which of these elements has the greatest atomic mass
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry

1. Which of these elements has the greatest atomic mass?

Correct answer: D

Rationale: Among the elements listed, Tungsten (W) has the greatest atomic mass. The atomic mass of Tungsten is approximately 183.84 atomic mass units (amu), while the atomic masses of the other elements listed are as follows: Gold (Au) is around 196.97 amu, Barium (Ba) is approximately 137.33 amu, and Iodine (I) is about 126.90 amu. Therefore, Tungsten (W) has the greatest atomic mass out of the given elements. Gold (Au) has a higher atomic mass than Barium (Ba) and Iodine (I), making choices A, B, and C incorrect.

2. How does increasing the concentration of reactants affect a chemical reaction?

Correct answer: B

Rationale: Increasing the concentration of reactants leads to more reactant particles being available, which, in turn, increases the likelihood of successful collisions between particles. This higher frequency of collisions results in a higher reaction rate. Therefore, option B, 'Increases the reaction rate,' is the correct answer. Choice A, 'Decreases the reaction rate,' is incorrect because higher reactant concentration usually speeds up the reaction. Choice C, 'Stops the reaction,' is incorrect as increasing concentration promotes more collisions, enhancing the reaction. Choice D, 'Has no effect,' is incorrect because changing reactant concentration directly impacts the reaction rate in most cases.

3. When balanced, the reaction Fe + O₂ → FeO will be?

Correct answer: C

Rationale: To balance the chemical equation Fe + O₂ → FeO, the coefficients needed are 2 for Fe and 1 for O. Therefore, the balanced equation becomes 2Fe + O₂ → 2FeO, which translates into 2Fe + 3O₂ → 2FeO. This corresponds to option C. Choice A has the incorrect number of oxygen molecules. Choice B has an incorrect number of Fe atoms on the product side. Choice D also has an incorrect number of Fe atoms on the product side.

4. Balance this equation: Zn + HCl → ZnCl + H2.

Correct answer: C

Rationale: The given unbalanced equation is Zn + HCl → ZnCl + H2. To balance it, we need to have equal atoms on both sides of the equation. The balanced equation is 2Zn + 2HCl → 2ZnCl + H2. This balanced equation shows that two atoms of Zn combine with two molecules of HCl to form two molecules of ZnCl and one molecule of H2. Choice A is incorrect because it does not balance the equation. Choice B is incorrect as it does not have the same number of atoms on both sides. Choice D is incorrect because it does not balance the equation properly, resulting in an unequal number of atoms on both sides.

5. Which intermolecular force is the strongest?

Correct answer: C

Rationale: Hydrogen bonding is the strongest intermolecular force due to its specific interaction between a hydrogen atom and a highly electronegative atom like nitrogen, oxygen, or fluorine. This type of bonding results in a very strong attraction between molecules, making it the strongest intermolecular force among the options provided. Dipole interactions (choice A) are weaker than hydrogen bonding as they occur between polar molecules. Dispersion forces (choice B) are the weakest intermolecular forces and are caused by temporary fluctuations in electron distribution. Van der Waals forces (choice D) are a broader term that encompasses dipole interactions and dispersion forces, making them weaker than hydrogen bonding.

Similar Questions

To the nearest whole number, what is the mass of one mole of water?
Which classification best describes B, Si, As, Te, At, Ge, and Sb that form a staircase pattern on the right side of the periodic table?
In which state of matter are particles packed tightly together in a fixed position?
What is the typical oxidation state of oxygen in most compounds?
Which substance causes a drop to rapidly turn litmus dye from blue to red?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses