which of these intermolecular forces might represent attraction between atoms of a noble gas
Logo

Nursing Elites

HESI A2

Chemistry Hesi A2

1. Which of these intermolecular forces might represent attraction between atoms of a noble gas?

Correct answer: B

Rationale: Noble gases are non-polar molecules without a permanent dipole moment. The only intermolecular force applicable to noble gases is the London dispersion force, also known as Van der Waals forces. This force is a temporary attractive force resulting from the formation of temporary dipoles in non-polar molecules. Dipole-dipole interactions, Keesom interactions, and hydrogen bonding involve significant dipoles or hydrogen atoms bonded to electronegative atoms, which do not apply to noble gases.

2. What is 0 K equal to in °C?

Correct answer: B

Rationale: 0 Kelvin, also known as absolute zero, is equal to -273°C. This is the point at which all molecular motion stops, making it the lowest possible temperature on the Kelvin scale. Choice A (-300°C) is incorrect as it is not the correct conversion of 0 K to °C. Choice C (-250°C) and Choice D (-200°C) are also incorrect as they do not correspond to the accurate conversion of 0 K to °C.

3. What is the correct name of AgNO₃?

Correct answer: D

Rationale: The correct name for AgNO₃ is silver nitrate. In chemical nomenclature, the element symbol Ag represents silver, and the polyatomic ion NO₃ is known as nitrate. Therefore, when the silver ion (Ag⁺) combines with the nitrate ion (NO₃⁻), the resulting compound is named silver nitrate (AgNO₃). Choices A, B, and C are incorrect because they do not accurately represent the composition of AgNO₃. Argent nitrous (Choice A) and Argent oxide (Choice B) do not reflect the correct anion, and Silver nitrite (Choice C) uses a different anion altogether.

4. What determines polarity in a molecule?

Correct answer: C

Rationale: Polarity in a molecule is determined by the difference in electronegativity between the atoms forming the bond. The greater the difference in electronegativity, the more polar the bond and molecule become. This difference leads to an uneven distribution of electron density within the bond, creating partial positive and negative charges on the atoms involved. Choices A, B, and D are incorrect. Bond length and strength do not determine polarity, and molecular weight is not directly related to the polarity of a molecule.

5. What is the product of the decomposition of water?

Correct answer: A

Rationale: The correct answer is A: Hydrogen and oxygen. When water undergoes decomposition, it breaks down into hydrogen and oxygen gases through a process known as electrolysis. This reaction is represented by 2H₂O → 2H₂ + O₂. Choice B, carbon dioxide, is incorrect as it is not a product of water decomposition. Choice C, nitrogen and hydrogen, is incorrect as water decomposes into hydrogen and oxygen, not nitrogen. Choice D, methane, is incorrect as methane is not a product of water decomposition.

Similar Questions

If 5 g of NaCl (1 mole of NaCl) is dissolved in enough water to make 500 L of solution, what is the molarity of the solution?
What is the number of protons in the atomic nucleus of an alkali metal?
What does the mass number minus the atomic number equal?
If electrons are shared equally in a covalent bond, the bond is classified as what?
If oxygen is in a compound, what would its oxidation number be?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses