HESI A2
Chemistry Hesi A2
1. What is the correct formula for sodium nitrate?
- A. NaNO
- B. Na NO
- C. NaNO₃
- D. Na NO₂
Correct answer: C
Rationale: The correct formula for sodium nitrate is NaNO₃. In this formula, 'Na' represents sodium, 'N' represents nitrogen, and 'O₃' represents three oxygen atoms. Sodium nitrate consists of one sodium ion (Na⁺) and one nitrate ion (NO₃⁻), which means the correct formula is NaNO₃. Choice A (NaNO) is incorrect as it lacks the subscript indicating the presence of three oxygen atoms. Choice B (Na NO) is incorrect as it includes a space between 'Na' and 'NO', which is not part of the standard chemical formula notation. Choice D (Na NO₂) is incorrect as it indicates a different compound with a nitrite ion (NO₂⁻) instead of nitrate ion.
2. In what type of covalent compounds are dispersion forces typically found?
- A. Polar
- B. Non-polar
- C. Ionic
- D. Hydrogen
Correct answer: B
Rationale: Dispersion forces, also known as London dispersion forces, are the weakest intermolecular forces that occur in non-polar covalent compounds. These forces result from temporary shifts in electron density within molecules, creating temporary dipoles. As a result, non-polar molecules, which lack a permanent dipole moment, can experience these dispersion forces. Polar compounds exhibit stronger intermolecular forces such as dipole-dipole interactions or hydrogen bonding, while ionic compounds involve electrostatic interactions between ions. Therefore, the correct answer is non-polar (choice B). Choices A, C, and D are incorrect because dispersion forces are typically found in non-polar covalent compounds, not polar, ionic, or hydrogen-bonded compounds.
3. How many electrons are shared in a single covalent bond?
- A. 1
- B. 2
- C. 3
- D. 4
Correct answer: B
Rationale: The correct answer is B: '2'. In a single covalent bond, two electrons are shared between two atoms. Each atom contributes one electron to form the bond, resulting in the sharing of a total of two electrons. Choice A is incorrect because a single covalent bond involves the sharing of two electrons, not one. Choices C and D are incorrect as they do not represent the correct number of electrons shared in a single covalent bond.
4. What is the oxidation state of the sulfur atom in sulfuric acid H2SO4?
- A. 4
- B. 6
- C. 8
- D. 10
Correct answer: B
Rationale: In sulfuric acid (H2SO4), sulfur has an oxidation state of +6. The oxidation state is determined by considering the overall charge of the compound and the known oxidation states of other elements. In this case, hydrogen is typically +1, and oxygen is -2. To balance the charges and match the compound's overall charge of 0, sulfur must have an oxidation state of +6. Choice A (4) is incorrect because it doesn't balance the charges in the compound. Choices C (8) and D (10) are also incorrect as they are not valid oxidation states for sulfur in this compound.
5. Which of these represents a strong acid?
- A. CH₃COOH
- B. H₂SO₄
- C. NH₃
- D. KOH
Correct answer: B
Rationale: Among the options provided, H₂SO₄ (sulfuric acid) represents a strong acid. Strong acids completely ionize in water to produce a high concentration of H+ ions. Sulfuric acid is a strong acid known for its ability to dissociate almost completely in water, making it a strong acid. Choice A, CH₃COOH (acetic acid), is a weak acid that only partially dissociates in water. Choices C and D, NH₃ (ammonia) and KOH (potassium hydroxide), are bases and not acids.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access