HESI A2
Chemistry HESI A2 Quizlet
1. What is the process of breaking bonds and forming new bonds to create new chemical compounds?
- A. Physical reaction
- B. Chemical reaction
- C. Nuclear reaction
- D. Mechanical reaction
Correct answer: B
Rationale: A chemical reaction involves the breaking and forming of bonds to create new substances. During a chemical reaction, the original chemical bonds are broken, and new bonds are formed to produce one or more new substances with different properties from the reactants. This transformation is a fundamental concept in chemistry and distinguishes chemical reactions from physical, nuclear, or mechanical reactions. Choice A, 'Physical reaction,' does not involve the breaking and forming of chemical bonds but rather changes in physical state or appearance. Choice C, 'Nuclear reaction,' involves changes in the nuclei of atoms, not the breaking and forming of chemical bonds. Choice D, 'Mechanical reaction,' refers to reactions involving physical forces or movements, not the breaking and forming of chemical bonds as in a chemical reaction.
2. When an acid is added to a base, water and a salt form. What kinds of bonds form in these two compounds?
- A. Liquid and metallic
- B. Polar and nonpolar covalent
- C. Polar covalent and ionic
- D. Ionic only
Correct answer: C
Rationale: In water, the bond formed between the oxygen atom and the hydrogen atoms is a polar covalent bond. The oxygen atom attracts the shared electrons more strongly, creating a partial negative charge on the oxygen and a partial positive charge on the hydrogen atoms. In the salt formed, the bond between the metal cation and the nonmetal anion is predominantly an ionic bond. The metal cation donates electrons to the nonmetal anion, resulting in the formation of oppositely charged ions that are held together by electrostatic attractions. Choices A and B are incorrect because water and salts do not form bonds that are liquid and metallic, or polar and nonpolar covalent. Choice D is incorrect as it oversimplifies the types of bonds present in water and salts, failing to differentiate between the covalent bond in water and the ionic bond in the salt.
3. What is the correct electron configuration for nitrogen?
- A. 1s² 2s²
- B. 1s² 2s² 2p²
- C. 1s² 2s² 2p³
- D. 1s² 2s² 2p⁴
Correct answer: C
Rationale: The electron configuration of nitrogen is determined by its atomic number, which is 7. Nitrogen has 7 electrons. Following the order of filling orbitals, the electron configuration for nitrogen is 1s² 2s² 2p³. This means the first energy level is filled with 2 electrons in the 1s orbital, the second energy level is filled with 2 electrons in the 2s orbital, and 3 electrons in the 2p orbital. Each orbital can hold a specific number of electrons, and nitrogen, with its 7 electrons, fits this configuration. Choice A is incorrect because it does not account for all the electrons in the nitrogen atom. Choice B is incorrect as it only represents 6 electrons, not the 7 electrons in nitrogen. Choice D is incorrect as it represents 8 electrons, which is not the correct electron configuration for nitrogen.
4. Which of the following best describes an endothermic reaction?
- A. A reaction that absorbs heat
- B. A reaction that releases heat
- C. A reaction that does not involve heat
- D. A reaction that remains at a constant temperature
Correct answer: A
Rationale: An endothermic reaction is a process that absorbs heat from its surroundings. When a reaction absorbs heat, it leads to a decrease in the temperature of the surroundings, making choice A the correct description. In an endothermic reaction, energy is taken in from the surroundings, resulting in a decrease in temperature around the reaction site. Choice B is incorrect because a reaction that releases heat is known as an exothermic reaction. Choice C is incorrect as all reactions involve heat to some extent. Choice D is incorrect as an endothermic reaction does not remain at a constant temperature but rather absorbs heat, leading to a temperature decrease in the surroundings.
5. How many electrons are in a neutral atom of neon?
- A. 9
- B. 10
- C. 11
- D. 12
Correct answer: B
Rationale: The atomic number of neon is 10, which represents the number of protons in its nucleus. In a neutral atom, the number of electrons is equal to the number of protons to maintain electrical neutrality. Therefore, a neutral atom of neon contains 10 electrons, matching the 10 protons within the nucleus. Choice A (9 electrons) is incorrect as it doesn't correspond to the atomic number of neon. Choices C (11 electrons) and D (12 electrons) are also incorrect as they do not align with the correct atomic number of neon.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access