HESI A2
HESI A2 Physics
1. A car, starting from rest, accelerates at 10 m/s² for 5 seconds. What is the velocity of the car after 5 seconds?
- A. 2 m/s
- B. 5 m/s
- C. 50 m/s
- D. The answer cannot be determined from the information given.
Correct answer: C
Rationale: The velocity of an object can be calculated using the formula: final velocity = initial velocity + (acceleration × time). In this case, the car starts from rest, so the initial velocity is 0 m/s. Given that the acceleration is 10 m/s² and the time is 5 seconds, we can plug these values into the formula to find the final velocity: final velocity = 0 m/s + (10 m/s² × 5 s) = 0 m/s + 50 m/s = 50 m/s. Therefore, the velocity of the car after 5 seconds is 50 m/s. Choice A (2 m/s) and Choice B (5 m/s) are incorrect because they do not consider the acceleration the car undergoes over the 5 seconds, resulting in a final velocity greater than both. Choice D (The answer cannot be determined from the information given) is incorrect as the final velocity can be determined using the provided data and the kinematic equation.
2. A constant force is exerted on a stationary object. In this scenario, work is:
- A. Performed
- B. Not performed
- C. Partially performed
- D. Inconclusive without further information
Correct answer: B
Rationale: Work is only done when a force causes displacement. Since the object is stationary, no displacement occurs, and therefore, no work is performed. Choice A is incorrect because work requires both force and displacement. Choice C is incorrect as there is no partial work - work is either done or not done. Choice D is incorrect as the scenario provided is clear - the object is stationary, so no work is being performed.
3. The Reynolds number (Re) is a dimensionless quantity used to characterize:
- A. Fluid density
- B. Flow regime (laminar vs. turbulent)
- C. Surface tension effects
- D. Buoyancy force magnitude
Correct answer: B
Rationale: The Reynolds number is a dimensionless quantity used to characterize the flow regime, specifically whether it is laminar (smooth) or turbulent (chaotic). It depends on the velocity of the fluid, its characteristic length (such as pipe diameter), and its viscosity. A low Reynolds number indicates laminar flow, while a high Reynolds number suggests turbulence. Choices A, C, and D are incorrect because the Reynolds number is not related to fluid density, surface tension effects, or buoyancy force magnitude.
4. Two objects attract each other with a gravitational force of 12 units. If you double the mass of both objects, what is the new force of attraction between them?
- A. 3 units
- B. 6 units
- C. 24 units
- D. 48 units
Correct answer: C
Rationale: The gravitational force between two objects is directly proportional to the product of their masses. When you double the masses of both objects, the force of attraction between them increases by a factor of 2 x 2 = 4. Therefore, the new force of attraction between the two objects will be 12 units x 4 = 24 units. Choices A, B, and D are incorrect because doubling the mass results in a quadruple increase in force, not a linear one.
5. For a compressible fluid subjected to rapid pressure changes, sound wave propagation becomes important. The speed of sound (c) depends on the fluid's:
- A. Density (ρ) only
- B. Viscosity (μ) only
- C. Density (ρ) and Bulk modulus
- D. Density (ρ) and Surface tension (γ)
Correct answer: C
Rationale: In a compressible fluid, the speed of sound (c) depends on both the fluid's density (ρ) and Bulk modulus. Density affects the compressibility of the fluid, while Bulk modulus represents the fluid's resistance to compression and plays a crucial role in determining the speed of sound in a compressible medium. Viscosity and surface tension do not directly impact the speed of sound in a compressible fluid subjected to rapid pressure changes. Therefore, the correct answer is C.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access