HESI A2
HESI A2 Physics
1. A car, starting from rest, accelerates at 10 m/s² for 5 seconds. What is the velocity of the car after 5 seconds?
- A. 2 m/s
- B. 5 m/s
- C. 50 m/s
- D. The answer cannot be determined from the information given.
Correct answer: C
Rationale: The velocity of an object can be calculated using the formula: final velocity = initial velocity + (acceleration × time). In this case, the car starts from rest, so the initial velocity is 0 m/s. Given that the acceleration is 10 m/s² and the time is 5 seconds, we can plug these values into the formula to find the final velocity: final velocity = 0 m/s + (10 m/s² × 5 s) = 0 m/s + 50 m/s = 50 m/s. Therefore, the velocity of the car after 5 seconds is 50 m/s. Choice A (2 m/s) and Choice B (5 m/s) are incorrect because they do not consider the acceleration the car undergoes over the 5 seconds, resulting in a final velocity greater than both. Choice D (The answer cannot be determined from the information given) is incorrect as the final velocity can be determined using the provided data and the kinematic equation.
2. Entropy (S) is a thermodynamic property related to the system's disorder. According to the second law of thermodynamics, in a spontaneous process:
- A. The total entropy of the system and surroundings increases.
- B. The total entropy of the system and surroundings decreases.
- C. The total entropy of the system remains constant.
- D. The total entropy of the surroundings increases, while the system's entropy decreases.
Correct answer: A
Rationale: The second law of thermodynamics asserts that the entropy of an isolated system (or the combined system and surroundings) will always increase in a spontaneous process, reflecting an increase in disorder. Therefore, the correct answer is that the total entropy of the system and surroundings increases. Choice B is incorrect because entropy always tends to increase in a spontaneous process, as dictated by the second law of thermodynamics. Choice C is incorrect as entropy typically increases in natural processes. Choice D is incorrect because the second law of thermodynamics states that the total entropy of the system and surroundings always increases in a spontaneous process.
3. The operating principle of a metal detector relies on:
- A. The static presence of a permanent magnet
- B. The electromotive force induced by a changing magnetic field
- C. The high electrical conductivity of most metals
- D. The unique thermal signature of metallic objects
Correct answer: B
Rationale: The correct answer is B. Metal detectors work based on the principle of electromotive force induced by a changing magnetic field. When a metal object comes into contact with the detector's magnetic field, it disrupts the field, inducing a current in the metal that can be detected. This principle allows metal detectors to identify the presence of metallic objects without relying on the static presence of a permanent magnet, the high electrical conductivity of metals, or the thermal signature of the objects. Choice A is incorrect because metal detectors do not rely on a static magnet but on the interaction of metals with a changing magnetic field. Choice C is incorrect because while metals do have high electrical conductivity, this is not the principle underlying metal detectors. Choice D is incorrect because metal detectors do not operate based on the thermal signature of objects, but rather on their interaction with magnetic fields.
4. What is the diameter of a loop if its radius is 6 meters?
- A. 6 m
- B. 12 m
- C. 18 m
- D. 36 m
Correct answer: B
Rationale: The diameter of a loop is calculated by multiplying the radius by 2. Since the radius is 6 meters, the diameter is 6 × 2 = 12 meters. Therefore, the correct answer is 12 meters. Choice A (6 m) is the radius, not the diameter. Choices C (18 m) and D (36 m) are incorrect as they do not reflect the correct calculation for determining the diameter of a loop.
5. A key parameter in fluid selection is specific gravity (SG). For a submerged object in a reference fluid (often water), SG = ρ_object / ρ_reference. An object with SG > 1 will:
- A. Experience a net buoyant force acting upwards
- B. Experience a net buoyant force acting downwards
- C. Remain neutrally buoyant
- D. Require knowledge of the object's volume for buoyancy determination
Correct answer: A
Rationale: When the specific gravity (SG) of an object is greater than 1, it indicates that the object is denser than the reference fluid, which is often water. According to Archimedes' principle, an object with SG > 1 will experience a net buoyant force acting upwards when submerged in the fluid. This is because the buoyant force is greater than the weight of the object, causing it to float. Therefore, the correct answer is A: 'Experience a net buoyant force acting upwards.' Objects with SG < 1 would sink as they are less dense than the fluid, while objects with SG = 1 would be neutrally buoyant, neither sinking nor floating.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access