a car starting from rest accelerates at 10 ms2 for 5 seconds what is the velocity of the car after 5 seconds
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. A car, starting from rest, accelerates at 10 m/s² for 5 seconds. What is the velocity of the car after 5 seconds?

Correct answer: C

Rationale: The velocity of an object can be calculated using the formula: final velocity = initial velocity + (acceleration × time). In this case, the car starts from rest, so the initial velocity is 0 m/s. Given that the acceleration is 10 m/s² and the time is 5 seconds, we can plug these values into the formula to find the final velocity: final velocity = 0 m/s + (10 m/s² × 5 s) = 0 m/s + 50 m/s = 50 m/s. Therefore, the velocity of the car after 5 seconds is 50 m/s. Choice A (2 m/s) and Choice B (5 m/s) are incorrect because they do not consider the acceleration the car undergoes over the 5 seconds, resulting in a final velocity greater than both. Choice D (The answer cannot be determined from the information given) is incorrect as the final velocity can be determined using the provided data and the kinematic equation.

2. During an isothermal (constant temperature) expansion, what is the work done by the gas on the surroundings?

Correct answer: D

Rationale: In an isothermal expansion, the temperature remains constant, meaning there is no change in internal energy. However, the gas still does work on the surroundings as it expands, and this work is positive. Since internal energy does not change, the correct answer is D, 'Positive and greater than the change in internal energy.' Choice A is incorrect because the work done is not equal to the change in internal energy. Choice B is incorrect as work is done during the expansion. Choice C is incorrect since the work done is not negative during an isothermal expansion.

3. What is the diameter of a loop if its radius is 6 meters?

Correct answer: B

Rationale: The diameter of a loop is calculated by multiplying the radius by 2. Since the radius is 6 meters, the diameter is 6 × 2 = 12 meters. Therefore, the correct answer is 12 meters. Choice A (6 m) is the radius, not the diameter. Choices C (18 m) and D (36 m) are incorrect as they do not reflect the correct calculation for determining the diameter of a loop.

4. What is the net force acting on the car?

Correct answer: C

Rationale: To determine the net force acting on an object, we need to consider the sum of the forces acting in the same direction and subtract the forces acting in the opposite direction. In this scenario, there is a force of 4,200 N to the right and a force of 2,700 N to the left. By subtracting the leftward force from the rightward force (4,200 N - 2,700 N), we find that the net force acting on the car is 1,500 N to the right. Therefore, choice C, 1,500 N, is the correct answer. Choice A, 450 N, is too small as it does not account for the total forces involved. Choice B, 700 N, is also incorrect as it is not the result of the correct mathematical operation on the given forces. Choice D, 6,300 N, is too large and does not align with the calculation based on the forces provided.

5. Energy manifests in various forms. Which of the following is NOT considered a fundamental energy type?

Correct answer: B

Rationale: The correct answer is B. Momentum is not considered a form of energy; it is a property of moving objects. Thermal, sound, and chemical energy are all forms of energy. Thermal energy is the energy associated with the movement of particles within an object. Sound energy is produced by vibrations and travels through materials as waves. Chemical energy is stored within the bonds of chemical compounds. While momentum is a crucial concept in physics, it is not a fundamental form of energy.

Similar Questions

In a U-tube manometer, a fluid is used to measure pressure differences. When one side is connected to a pressurized system, the fluid level on that side will:
Viscosity, μ, is a transport property of a fluid that reflects its:
A circular running track has a circumference of 2,500 meters. What is the radius of the track?
In an electrically neutral atom, the number of:
If the force acting on an object is doubled, how does its acceleration change?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses