HESI A2
HESI A2 Physics Quizlet
1. Viscosity, μ, is a transport property of a fluid that reflects its:
- A. Inertia
- B. Resistance to flow
- C. Compressibility
- D. Buoyancy generation
Correct answer: B
Rationale: Viscosity refers to a fluid's resistance to flow. A fluid with high viscosity (like honey) flows slowly, while a fluid with low viscosity (like water) flows more easily. It is a measure of internal friction in the fluid. Choice A, 'Inertia,' is incorrect as inertia is the tendency of an object to resist changes in its state of motion. Choice C, 'Compressibility,' is incorrect as it refers to the ability of a fluid to be compressed. Choice D, 'Buoyancy generation,' is incorrect as it relates to the upward force exerted by a fluid that opposes the weight of an immersed object.
2. Marilyn is driving to a wedding. She drives 4 miles south before realizing that she left the gift at home. She makes a U-turn, returns home to pick up the gift, and sets out again driving south. This time, she drives 1 mile out of her way to pick up a friend. From there, they continue 5 miles more to the wedding. Which of these statements is true about Marilyn’s trip?
- A. The displacement of her trip is 6 miles, and the distance traveled is 6 miles.
- B. The displacement of her trip is 14 miles, and the distance traveled is 14 miles.
- C. The displacement of her trip is 8 miles, and the distance traveled is 14 miles.
- D. The displacement of her trip is 6 miles, and the distance traveled is 14 miles.
Correct answer: C
Rationale: Marilyn’s displacement is calculated based on her final position relative to the starting point. She drives 1 mile to pick up her friend, then 5 miles more to the wedding, totaling 6 miles after returning to her home. So, the correct displacement is 8 miles south from her starting point (4 miles to the gift + 4 miles return + 1 mile to the friend + 5 miles to the wedding). The total distance traveled is 14 miles (adding all the distances). Choice A is incorrect because it miscalculates the displacement. Choice B is incorrect as it overestimates both the displacement and distance traveled. Choice D is incorrect as it underestimates the displacement.
3. How might the energy use of an appliance be expressed?
- A. Power = energy × time
- B. Time + energy = power
- C. Energy = power × time
- D. Energy/power = time
Correct answer: C
Rationale: The energy use of an appliance can be expressed using the formula Energy = Power × Time. In this formula, Energy represents the amount of electricity consumed by the appliance, Power indicates the rate at which the appliance uses electricity (measured in watts), and Time represents the duration for which the appliance is being used (measured in hours). By multiplying the power rating of the appliance by the time it is in use, one can calculate the total energy consumed. Option C is the correct choice because it accurately represents the relationship between power, time, and energy. Choices A, B, and D present incorrect representations of the relationship between energy, power, and time, making them wrong answers.
4. Two objects attract each other with a gravitational force of 12 units. If the distance between them is halved, what is the new force of attraction between the two objects?
- A. 3 units
- B. 6 units
- C. 24 units
- D. 48 units
Correct answer: C
Rationale: The gravitational force between two objects is inversely proportional to the square of the distance between them. When the distance is halved, the new force of attraction will be 12 units x (1/(0.5)^2) = 12 units x 4 = 24 units. Therefore, the correct answer is C. Choice A and B are incorrect as they do not consider the inverse square law of gravitational force. Choice D is incorrect as reducing the distance between the objects does not lead to a squared increase in force.
5. An object with a mass of 45 kg has momentum equal to 180 kg⋅m/s. What is the object’s velocity?
- A. 4 m/s
- B. 8.1 km/s
- C. 17.4 km/h
- D. 135 m/s
Correct answer: A
Rationale: The momentum of an object is calculated by multiplying its mass and velocity. Mathematically, momentum = mass x velocity. Given that the mass is 45 kg and the momentum is 180 kg⋅m/s, we can rearrange the formula to solve for velocity: velocity = momentum / mass. Plugging in the values, velocity = 180 kg⋅m/s / 45 kg = 4 m/s. Therefore, the object's velocity is 4 m/s. Choices B, C, and D are incorrect because they do not align with the correct calculation based on the given mass and momentum values.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access